【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)判斷方程在內(nèi)的解的個數(shù),并加以證明.
【答案】(1);(2)方程在上有3個解;證明見解析。
【解析】
(1)根據(jù)直線的切線方程,可得斜率即過的定點(diǎn)坐標(biāo),對函數(shù)求導(dǎo),代入橫坐標(biāo)即可求得參數(shù)a;將橫坐標(biāo)帶入原函數(shù)即可求得b,即得解析式。
(2)令,對求導(dǎo),并可知,,根據(jù)零點(diǎn)存在定理及單調(diào)性可知在上只有一個零點(diǎn)。同理,討論在各區(qū)間的端點(diǎn)符號及單調(diào)性即可判斷零點(diǎn)情況。
(1)直線的斜率為,過點(diǎn)
,則,即
所以
(2)方程在上有3個解。
證明:令,
則
又,,
所以在上至少有一個零點(diǎn)
又在上單調(diào)遞減,故在上只有一個零點(diǎn),
當(dāng)時,,故,
所以函數(shù)在上無零點(diǎn).
當(dāng)時,令,,
所以在上單調(diào)遞增,,
所以,使得在上單調(diào)遞增,在上單調(diào)遞減.
又,,所以函數(shù)在上有2個零點(diǎn).
綜上,方程在上有3個解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個圓周上有9個點(diǎn),以這9個點(diǎn)為頂點(diǎn)作3個三角形.當(dāng)這3個三角形無公共頂點(diǎn)且邊互不相交時,我們把它稱為一種構(gòu)圖.滿足這樣條件的構(gòu)圖共有( )種.
A. 3 B. 6 C. 9 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王府井百貨分店今年春節(jié)期間,消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計(jì), 表示第天參加抽獎活動的人數(shù),得到統(tǒng)計(jì)表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);
(3)若該活動只持續(xù)10天,估計(jì)共有多少名顧客參加抽獎.
參與公式: , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個人獨(dú)立地破譯一個密碼,他們能譯出密碼的概率分別為和.
(1)求2個人都譯出密碼的概率;
(2)求2個人都譯不出密碼的概率;
(3)求至多1個人都譯出密碼的概率;
(4)求至少1個人都譯出密碼的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,其中的“更相減損術(shù)”可以用來求兩個數(shù)的最大公約數(shù),原文是:可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之. 翻譯為現(xiàn)代的語言如下:如果需要對分?jǐn)?shù)進(jìn)行約分,那么可以折半的話,就折半(也就是用2來約分).如果不可以折半的話,那么就比較分母和分子的大小,用大數(shù)減去小數(shù),互相減來減去,一直到減數(shù)與差相等為止,用這個相等的數(shù)字來約分,現(xiàn)給出“更相減損術(shù)”的程序框圖如圖所示,如果輸入的,,則輸出的( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大;
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)設(shè)函數(shù),若有兩個零點(diǎn).
(i)求的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,點(diǎn),,分別是線段,,的中點(diǎn).
(1)求證:平面;
(2)在線段上有一點(diǎn),若二面角的余弦值為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將下列問題的解答過程補(bǔ)充完整.
依次計(jì)算數(shù)列,,,,…的前四項(xiàng)的值,由此猜測的有限項(xiàng)的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.
解:計(jì)算 ,
,
① ,
② ,
由此猜想 ③ .(*)
下面用數(shù)學(xué)歸納法證明這一猜想.
(i)當(dāng)時,左邊,右邊,所以等式成立.
(ⅱ)假設(shè)當(dāng)時,等式成立,即
④ .
那么,當(dāng)時,
⑤
⑥
⑦ .
等式也成立.
根據(jù)(i)和(ⅱ)可以斷定,(*)式對任何都成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com