分別是自然對數(shù)的底和圓周率,則下列不等式不成立的是(   )
A.B.
C.D.
C

試題分析:令時,上單調(diào)遞增,而成立;由均值不等式,得成立;令.當時,上單調(diào)遞增.而
不成立;
成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在點處的切線方程為
(1)求,的值;
(2)對函數(shù)定義域內(nèi)的任一個實數(shù),恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

湖北宜昌“三峽人家”風(fēng)景區(qū)為提高經(jīng)濟效益,現(xiàn)對某一景點進行改造升級,從而擴大內(nèi)需,提高旅游增加值,經(jīng)過市場調(diào)查,旅游增加值萬元與投入萬元之間滿足:為常數(shù),當萬元時,萬元;當萬元時,萬元.(參考數(shù)據(jù):,,
(Ⅰ)求的解析式;
(Ⅱ)求該景點改造升級后旅游利潤的最大值.(利潤=旅游收入-投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù).
(1)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù) 的最小值為
(1)求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點(1,)處的切線方程為,則       .(為常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若曲線與曲線在交點處有公切線, 則   (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線在點處的切線方程為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案