如圖,圓C:x2+y2-2x-8=0內(nèi)有一點(diǎn)P(2,2),過點(diǎn)p作直線l交圓于A,B兩點(diǎn).
(1)當(dāng)直線l經(jīng)過圓心C時(shí),求直線l的方程;
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線l方程;
(3)當(dāng)直線l傾斜角為45°時(shí),求△ABC的面積.

【答案】分析:(1) 先求出直線l的斜率,用點(diǎn)斜式寫直線的方程,并化為一般式.
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),由CP⊥AB,求得AB的斜率,用點(diǎn)斜式求直線方程.
(3)用斜截式設(shè)出直線l的方程,點(diǎn)P坐標(biāo)代入,可得截距的值,由點(diǎn)到直線的距離公式求出點(diǎn)C到直線l的距離,
由弦長(zhǎng)公式求|AB|,代入三角形的面積公式進(jìn)行運(yùn)算.
解答:解:(1)∵圓C:(x-1)2+y2=9,∴KCP ==2,
又∵點(diǎn)C(1,0)在直線上,∴l(xiāng)的方程為2x-y-2=0,
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),連CP,則CP⊥AB,
∵KCP=2,KAB=-,∴l(xiāng)的方程為x+2y-6=0,
(3)∵直線l傾斜角為45°,設(shè)直線l的方程為y=x+b,∵直線l過點(diǎn)P,2=2+b,b=0,
∴l(xiāng)的方程為y-x=0,點(diǎn)C到直線l的距離為d=,
由弦長(zhǎng)公式可得|AB|=2=2=,
∴三角形△ABC的面積是S△ABC=|AB|•d=
點(diǎn)評(píng):本題考查兩直線垂直的性質(zhì),用點(diǎn)斜式、斜截式求直線的方程,點(diǎn)到直線的距離公式以及弦長(zhǎng)公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M、N(點(diǎn)M在點(diǎn)N的左側(cè)),且|MN|=3,
(Ⅰ)求圓C的方程;
(Ⅱ)過點(diǎn)M任作一條直線與圓O:x2+y2=4相交于兩點(diǎn)A、B,連接AN、BN.求證:∠ANM=∠BNM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,經(jīng)過橢圓E的下頂點(diǎn)A和右焦點(diǎn)F的直線l與圓C:x2+(y-2b)2=
27
4
相切.
(1)求橢圓E的方程;
(2)若動(dòng)點(diǎn)P、Q分別在圓C與橢圓E上運(yùn)動(dòng),求|PQ|取得最大值時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O:x2+y2=
π
2
 
內(nèi)的正弦曲線y=sinx與x軸圍成的區(qū)域記為M(圖中陰影部分),隨機(jī)向圓O內(nèi)投一個(gè)點(diǎn)P,則點(diǎn)P落在區(qū)域M內(nèi)的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•武昌區(qū)模擬)如圖,已知點(diǎn)P是圓C:x2+(y-2
2
)
2
=1
上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線l:x-y=0上的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),則向量
OP
在向量
OQ
上的投影的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省榆林市神木中學(xué)高三(上)數(shù)學(xué)寒假作業(yè)1(理科)(解析版) 題型:選擇題

如圖,圓O:x2+y22內(nèi)的正弦曲線y=sinx與x軸圍成的區(qū)域記為M(圖中陰影部分),隨機(jī)往圓O內(nèi)投一個(gè)點(diǎn)A,則點(diǎn)A落在區(qū)域M內(nèi)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案