【題目】已知函數(shù) .
(1)若 ,求曲線 在點 處的切線方程;
(2)若 在 處取得極小值,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】試題分析:
(1)利用導(dǎo)函數(shù)可得切線的斜率為,然后由點斜式可得切線方程為;
(2)首先對g(x)求導(dǎo),然后分類討論可得實數(shù) 的取值范圍為 .
試題解析:
解:(1)當(dāng) 時, ,所以直線 在點 處的切線方程為 .
(2)由已知得 ,則 ,記 ,則 .
①當(dāng) 時, ,函數(shù)單調(diào)遞增,所以當(dāng) 時, ,當(dāng)時, ,所以 在處取得極小值,滿足題意.
②當(dāng)時, ,當(dāng) 時, ,故函數(shù)單調(diào)遞增,可得當(dāng) 時, 時, ,所以 在處取得極小值,滿足題意.
③當(dāng)時,當(dāng) 時, , 在內(nèi)單調(diào)遞增, 時, 在內(nèi)單調(diào)遞減,所以當(dāng)時, 單調(diào)遞減,不合題意.
④當(dāng)時,即,當(dāng) 時, 單調(diào)遞減, ,當(dāng)時, 單調(diào)遞減, ,所以在處取得極大值,不合題意. 綜上可知,實數(shù) 的取值范圍為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的頂點坐標(biāo)分別為A(0,1),B(2,0),C(3,2).
(1)求CD邊所在直線的方程;
(2)求以AC為直徑的圓M的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為△ABC的三個內(nèi)角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,已知a1=1, ,
(1)求證數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)若對一切n∈N* , 等式a1b1+a2b2+a3b3+…+anbn=2n恒成立,求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=f(x)的圖象經(jīng)過原點,且1≤f(﹣1)≤2,3≤f(1)≤4,求f(﹣2)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=Asin(ωx+φ)(x>0,A>0)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間
(3)設(shè)不相等的實數(shù),x1 , x2∈(0,π),且f(x1)=f(x2)=﹣2,求x1+x2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示
(1)求函數(shù)f(x)的解析式;
(2)分析該函數(shù)是如何通過y=sinx變換得來的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com