【題目】已知圓的圓心坐標(biāo)為,且該圓經(jīng)過點.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若點也在圓上,且弦長為8,求直線的方程;
(3)直線交圓于,兩點,若直線,的斜率之積為2,求證:直線過一個定點,并求出該定點坐標(biāo).
【答案】(1)(2)或(3)證明見解析,定點
【解析】
(1)圓以為圓心,為半徑,直接寫出圓的標(biāo)準(zhǔn)方程;
(2)對直線的斜率進(jìn)行討論,再利用弦長公式和點到直線距離公式,可求得直線的斜率,再由點斜式方程求得答案;
(3)設(shè)直線:,,,利用
得到的關(guān)系,從而證得結(jié)論.
(1)圓以為圓心,為半徑,
所以圓的標(biāo)準(zhǔn)方程為.
(2)①不存在時,直線的方程為:;
②存在時,設(shè)直線的方程為:,
聯(lián)立方程,
所以直線的方程為:,
綜上所述,直線的方程為或.
(3)設(shè)直線:,,,
①
聯(lián)立方程,
所以,代入①
得,
化簡得,所以直線的方程為:,所以過定點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點,點是橢圓上任意一點,且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在直線上是否存在點Q,使以為直徑的圓經(jīng)過坐標(biāo)原點O,若存在,求出線段的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:上的點到右焦點F的最大距離為,離心率為.
求橢圓C的方程;
如圖,過點的動直線l交橢圓C于M,N兩點,直線l的斜率為,A為橢圓上的一點,直線OA的斜率為,且,B是線段OA延長線上一點,且過原點O作以B為圓心,以為半徑的圓B的切線,切點為令,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點分別是,,,是其左右頂點,點是橢圓上任一點,且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓于,兩個不同點,證明:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮等差數(shù)列的各項均為整數(shù),首項為、公差為,是其前項和,是其中的三項,給出下列命題:
①對任意滿足條件的,存在,使得一定是數(shù)列中的一項;
②存在滿足條件的數(shù)列,使得對任意的,成立;
③對任意滿足條件的,存在,使得一定是數(shù)列中的一項。
其中正確命題的序號為( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.
(1)求的直角坐標(biāo)方程和的直角坐標(biāo);
(2)設(shè)與交于,兩點,線段的中點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點,橢圓:的離心率為,直線:交橢圓于,兩點,,且點在橢圓上,當(dāng)時,.
(1)求橢圓方程;
(2)試探究四邊形的面積是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com