精英家教網 > 高中數學 > 題目詳情

【題目】關于函數,下列判斷正確的是(

A.的極大值點

B.函數有且只有1個零點

C.存在正實數,使得恒成立

D.對任意兩個正實數,,且,若,則

【答案】BD

【解析】

利用導數為工具,對選項逐一分析,由此確定正確選項.

1的定義域為,,所以上遞減,在上遞增,所以的極小值點.A選項錯誤.

2)構造函數,所以上遞減.,,.所以有且只有一個零點.B選項正確.

3)構造函數.,由于,開口向下,時,,即,,故不存在正實數,使得恒成立,C選項錯誤.

(4)由(1)知,上遞減,在上遞增, 的極小值點.由于任意兩個正實數,且,,故.,.,即,即,解得,則.所以.要證,即證,即證,由于,所以,故即證.構造函數(先取),;;.所以上為增函數,所以,所以上為增函數,所以.故當時,.即證得①成立,故D選項正確.

故選:BD.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)求的極值;

2)若時,的單調性相同,求的取值范圍;

3)當時,函數,有最小值,記的最小值為,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的焦距為4,點P(2,3)在橢圓上.

(1)求橢圓C的方程;

(2)過點P引圓的兩條切線PA,PB,切線PAPB與橢圓C的另一個交點分別為A,B試問直線AB的斜率是否為定值?若是,求出其定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,沿河有、兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現為保護環(huán)境,污水需經處理才能排放,兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據經驗公式,建廠的費用為(萬元),表示污水流量,鋪設管道的費用(包括管道費)(萬元),表示輸送污水管道的長度(千米).已知城鎮(zhèn)和城鎮(zhèn)的污水流量分別為,,、兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經管道運輸的污水流量不發(fā)生改變,污水經處理后直接排入河中;請解答下列問題:

1)若在城鎮(zhèn)和城鎮(zhèn)單獨建廠,共需多少總費用?

2)考慮聯(lián)合建廠可能節(jié)約總投資,設城鎮(zhèn)到擬建廠的距離為千米,求聯(lián)合建廠的總費用的函數關系式,并求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時)

(1)應收集多少位女生樣本數據?

(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為:.估計該校學生每周平均體育運動時間超過4個小時的概率.

(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有的把握認為該校學生的每周平均體育運動時間與性別有關.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線經過橢圓: 的左頂點和上頂點,橢圓的右頂點為,點是橢圓上位于軸上方的動點,直線與直線分別交于兩點。

(1)求橢圓方程;

(2)求線段的長度的最小值;

(3)當線段的長度最小時,在橢圓上有兩點,使得,的面積都為,求直線y軸上的截距。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)當時,若直線是函數的圖象的切線,求的最小值;

(2)設函數,若上存在極值,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間有50名工人,要完成150件產品的生產任務,每件產品由3A 型零件和1B 型零件配套組成.每個工人每小時能加工5A 型零件或者3B 型零件,現在把這些工人分成兩組同時工作(分組后人數不再進行調整),每組加工同一中型號的零件.設加工A 型零件的工人人數為x名(x∈N*

1)設完成A 型零件加工所需時間為小時,寫出的解析式;

2)為了在最短時間內完成全部生產任務,x應取何值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點P,Q分別為A1B1BC的中點.

(1)求異面直線BPAC1所成角的余弦值;

(2)求直線CC1與平面AQC1所成角的正弦值.

查看答案和解析>>

同步練習冊答案