【題目】已知函數(shù)

的定義域?yàn)?/span>R,求a的取值范圍;

,求的單調(diào)區(qū)間;

是否存在實(shí)數(shù)a,使上為增函數(shù)?若存在,求出a的范圍;若不存在,說(shuō)明理由.

【答案】(1);(2)在上為增函數(shù),在上為減函數(shù);(3)不存在實(shí)數(shù)a,使上為增函數(shù)

【解析】

1)定義域?yàn)?/span>,說(shuō)明真數(shù)部分恒大于零,利用一元二次方程的滿足的不等式計(jì)算的取值范圍;

2)先根據(jù)條件計(jì)算出的值,然后分析對(duì)數(shù)式的真數(shù)大于零以及二次函數(shù)的開(kāi)口方向和對(duì)稱軸,由此求解出單調(diào)區(qū)間;

3)分析真數(shù)部分的二次函數(shù)的對(duì)稱軸以及單調(diào)性,由此確定出滿足的不等式,根據(jù)其解集即可判斷出是否存在滿足要求.

函數(shù)的定義域?yàn)?/span>R,

恒成立,

,即

解得a的取值范圍是

,

,

,得

設(shè),對(duì)稱軸

上為減函數(shù),在上為增函數(shù).

根據(jù)復(fù)合函數(shù)單調(diào)性規(guī)律可判斷:

上為增函數(shù),在上為減函數(shù).

函數(shù)

設(shè),

可知在上為減函數(shù),在上為增函數(shù),

上為增函數(shù),

,,不可能成立.

不存在實(shí)數(shù)a,使上為增函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知海島在海島北偏東,,相距海里,物體甲從海島海里/小時(shí)的速度沿直線向海島移動(dòng),同時(shí)物體乙從海島沿著海島北偏西方向以海里/小時(shí)的速度移動(dòng).

1)問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間,物體甲在物體乙的正東方向;

2)求甲從海島到達(dá)海島的過(guò)程中,甲、乙兩物體的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.

(1)求曲線C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;

(2)射線OP:(其中)與C2交于P點(diǎn),射線OQ:與C2交于Q點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的最值;

(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求的最大值和最小值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為,且經(jīng)過(guò)點(diǎn)M(1,),過(guò)點(diǎn)P(2,1)的直線l與橢圓C相交于不同的兩點(diǎn)A,B.

1)求橢圓C的方程;

2)是否存在直線l,滿足?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知長(zhǎng)方體ABCDA1B1C1D1中,A1AAB,E、F分別是BD1AD中點(diǎn),求異面直線CD1,EF所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù),上的奇函數(shù),且.

1)求的解析式;

2)若函數(shù)上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案