【題目】已知函數(shù)f(x)=|x|(x﹣a),a為實(shí)數(shù).
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在[0,2]為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a(a<0),使得f(x)在閉區(qū)間 上的最大值為2,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:因?yàn)槠婧瘮?shù)f(x)定義域?yàn)镽,
所以f(﹣x)=﹣f(x)對(duì)任意x∈R恒成立,
即|﹣x|(﹣x﹣a)=﹣|x|(x﹣a),即|x|(﹣x﹣a+x﹣a)=0,
即2a|x|=0對(duì)任意x∈R恒成立,
所以a=0
(2)解:因?yàn)閤∈[0,2],所以f(x)=x(x﹣a),
顯然二次函數(shù)的對(duì)稱(chēng)軸為 ,由于函數(shù)f(x)在[0,2]上單調(diào)遞增,
所以 ,
即a≤0(若分a<0,a=0,a>0三種情況討論他可)
(3)解:∵a<0, ,
∴f(﹣1)=﹣1﹣a≤2,∴﹣a≤3(先用特殊值約束范圍)
∴ ,f(x)在(0,+∞)上遞增,
∴f(x)必在區(qū)間[﹣1,0]上取最大值2.
當(dāng) ,即a<﹣2時(shí),則f(﹣1)=2,a=﹣3,成立
當(dāng) ,即0>a≥﹣2時(shí), ,則 (舍)
綜上,a=﹣3
【解析】(1)利用函數(shù)是奇函數(shù)定義,列出關(guān)系式,即可求出a的值;(2)推出二次函數(shù)的性質(zhì),列出不等式求解即可.(3)化簡(jiǎn)函數(shù)為分段函數(shù),通過(guò)討論a的范圍,列出關(guān)系式求解即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義和奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知(a4﹣1)3+2016(a4﹣1)=1,(a2013﹣1)3+2016(a2013﹣1)=﹣1,則下列結(jié)論正確的是( )
A.S2016=﹣2016,a2013>a4
B.S2016=2016,a2013>a4
C.S2016=﹣2016,a2013<a4
D.S2016=2016,a2013<a4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求全班人數(shù)及分?jǐn)?shù)在之間的頻數(shù);
(2)估計(jì)該班的平均分?jǐn)?shù),并計(jì)算頻率分布直方圖中間的矩形的高;
(3)若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點(diǎn),面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線: (t為參數(shù))與曲線C: (θ為參數(shù))相交于不同的兩點(diǎn)A,B.
(1)若α= ,求線段AB的長(zhǎng)度;
(2)若直線的斜率為 ,且有已知點(diǎn)P(2, ),求證:|PA||PB|=|OP|2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,函數(shù) ,
(1)求函數(shù)f(x)的定義域;
(2)將函數(shù)y=f(x)的圖象向右平移兩個(gè)單位后得到函數(shù)y=g(x)的圖象,若實(shí)數(shù)x滿(mǎn)足g(x)≥0,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量ξ的分布列為
ξ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 |
P |
若P(ξ2>x)= ,則實(shí)數(shù)x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè), .
(1)若,求的單調(diào)區(qū)間;
(2)討論在區(qū)間上的極值點(diǎn)個(gè)數(shù);
(3)是否存在,使得在區(qū)間上與軸相切?若存在,求出所有的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集具有性質(zhì)對(duì)任意的,使得成立.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說(shuō)明理由;
(2)求證: ;
(2)若,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com