精英家教網 > 高中數學 > 題目詳情

【題目】某市準備引進優(yōu)秀企業(yè)進行城市建設. 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.

(Ⅰ)根據莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;

(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.

注:方差

【答案】(Ⅰ)88,48.4.(Ⅱ)

【解析】試題分析:(Ⅰ)直接利用莖葉圖求解乙地對企業(yè)評估得分的平均值和方差即可.
(Ⅱ)甲區(qū)優(yōu)秀企業(yè)得分為88,89,93,954個,乙區(qū)優(yōu)秀企業(yè)得分為86,95,963個.列出從兩個區(qū)各選一個優(yōu)秀企業(yè),所有基本事件,求出得分的絕對值的差不超過5分的個數.即可求解概率.

試題解析:(Ⅰ)乙地對企業(yè)評估得分的平均值是,

方差是.

(Ⅱ)從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,有 , , , , , , 組, 設“得分的差的絕對值不超過5分”為事件,則事件包含有, , , , , 組.

所以

所以得分的差的絕對值不超過5分的概率是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】據《中國新聞網》10月21日報道,全國很多省市將英語考試作為高考改革的重點,一時間“英語考試該如何改”引起廣泛關注.為了解某地區(qū)學生和包括老師、家長在內的社會人士對高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調查,就是否“取消英語聽力”的問題,調查統(tǒng)計的結果如下表:

態(tài)度
調查人群

應該取消

應該保留

無所謂

在校學生

2100人

120人

y人

社會人士

600人

x人

z人

已知在全體樣本中隨機抽取1人,抽到持“應該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現用分層抽樣的方法在所有參與調查的人中抽取360人進行問卷訪談,問應在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)在持“應該保留”態(tài)度的人中,用分層抽樣的方法抽取6人平均分成兩組進行深入交流,求第一組中在校學生人數ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)若曲線處的切線的方程為,求實數的值;

(2)設,若對任意兩個不等的正數,都有恒成立,求實數的取值范圍;

(3)若在上存在一點,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸出的,那么判斷框中填入的條件可以是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間內,其頻率分布直方圖如圖.則獲得復賽資格的人數為(  )

A. 520 B. 540 C. 620 D. 640

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數的解析式為(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某闖關游戲有這樣一個環(huán)節(jié):該關卡有一道上了鎖的門,要想通過該關卡,要拿到門前密碼箱里的鑰匙,才能開門過關.但是密碼箱需要一個密碼才能打開,并且3次密碼嘗試錯誤,該密碼箱被鎖定,從而闖關失。橙说竭_該關卡時,已經找到了可能打開密碼箱的6個密碼(其中只有一個能打開密碼箱),他決定從中隨機地選擇1個密碼進行嘗試.若密碼正確,則通關成功;否則繼續(xù)嘗試,直至密碼箱被鎖定.
(1)求這個人闖關失敗的概率;
(2)設該人嘗試密碼的次數為X,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側面ABC是等腰直角三角形,∠EBC=ABC=90°,BC=CD=2BE=2,點M是棱AD的中點

(I)證明:平面AED⊥平面ACD;

()求銳二面角B-CM-A的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案