【題目】已知a>0,b>0,且ab=1,則函數(shù)f(x)=ax與函數(shù)g(x)=﹣logbx的圖象可能是( )
A.
B.
C.
D.
【答案】B
【解析】解:∵ab=1
g(x)=﹣logbx=logax
則函數(shù)f(x)=ax(a>0且a≠1)與g(x)=﹣logbx(b>0且b≠1)互為反函數(shù)
故函數(shù)f(x)=ax(a>0且a≠1)與g(x)=﹣logbx(b>0且b≠1)的圖象關(guān)于直線y=x對稱
所以答案是:B.
【考點(diǎn)精析】通過靈活運(yùn)用指數(shù)函數(shù)的圖像與性質(zhì),掌握a0=1, 即x=0時(shí),y=1,圖象都經(jīng)過(0,1)點(diǎn);ax=a,即x=1時(shí),y等于底數(shù)a;在0<a<1時(shí):x<0時(shí),ax>1,x>0時(shí),0<ax<1;在a>1時(shí):x<0時(shí),0<ax<1,x>0時(shí),ax>1即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點(diǎn),則截面AEFD1與底面ABCD所成二面角的正弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex(sinx﹣cosx)(0≤x≤2016π),則函數(shù)f(x)的各極大值之和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位
B.向左平移 個(gè)單位
C.向右平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 ,焦點(diǎn)到準(zhǔn)線的距離為4,過點(diǎn) 的直線交拋物線于 兩點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)如果點(diǎn) 恰是線段 的中點(diǎn),求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓
(1)過點(diǎn)的圓的切線只有一條,求的值及切線方程;
(2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com