【題目】在直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若曲線相交于,兩點,求的值.

【答案】(1),.(2).

【解析】分析:第一問將參數(shù)方程消參,求得其普通方程,對于曲線將方程兩邊同時乘以再結合極坐標與直角坐標之間的轉換關系,求得極坐標方程,第二問將直線的參數(shù)方程寫出=成標準形式,代入曲線方程,整理,利用韋達定理求得兩根和與兩根積,結合直線出參數(shù)方程中參數(shù)的幾何意義求得結果.

詳解:(1)由為參數(shù)),

可得的普通方程為,

的極坐標方程為,即

所以的直角坐標方程為

(2)的參數(shù)方程可化為為參數(shù)),

代入得:,

,對應的直線的參數(shù)分別為,

,,所以,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面是正方形,底面.

(1)求證:直線平面;

(2)當的值為多少時,二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,已知直線 為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程;

(2)設點的極坐標為,直線與曲線的交點為, ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知是奇函數(shù),求常數(shù)m的值;

(2)畫出函數(shù)的圖象,并利用圖象回答:k為何值時,方程 無解?有一解?有兩解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3mx﹣ ﹣(3+m)lnx,若對任意的m∈(4,5),x1 , x2∈[1,3],恒有(a﹣ln3)m﹣3ln3>|f(x1)﹣f(x2)|成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法:①設有一個回歸方程,變量增加一個單位時,平均增加個單位;②線性回歸直線必過必過點;③在吸煙與患肺病這兩個分類變量的計算中,從獨立性檢驗知,有的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有的可能患肺;其中錯誤的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關?

(2)現(xiàn)從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.

(1)求最后取出的是正品的概率;

(2)已知每檢測一件產(chǎn)品需要費用100元,設表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問100性別不同的大學生是否愛好某項運動,得到如下2×2列聯(lián)表:

總計

愛好

40

不愛好

25

總計

45

100


(1)將題中的2×2列聯(lián)表補充完整;
(2)能否有99%的把握認為斷愛好該項運動與性別有關?請說明理由;
附:K2= ,

p(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828


(3)利用分層抽樣的方法從以上愛好該項運動的大學生中抽取6人組建了“運動達人社”,現(xiàn)從“運動達人設”中選派3人參加某項校際挑戰(zhàn)賽,記選出3人中的女大學生人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案