有以下四個(gè)命題:①若命題P:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1;②?α,β∈R,使得sin(α+β)=sinα+sinβ;③若{an}為等比數(shù)列;甲:m+n=p+q(m、n、p、q∈N*)    乙:am•an=ap•aq,則甲是乙的充要條件;④設(shè)p、q是簡(jiǎn)單命題,若“p∨q”為假命題,則“?p∧?q”為真命題.其中真命題的序號(hào)
②④
②④
分析:對(duì)于①要理解全稱命題和特稱命題的關(guān)系,對(duì)于②可采用特殊角進(jìn)行判斷,對(duì)于③利用等比數(shù)列性質(zhì)將乙變形后再判斷,對(duì)于④利用含有邏輯連接詞的命題關(guān)系進(jìn)行判斷.
解答:若命題P:?x∈R,sinx≤1,則¬P:?x∈R,sinx>1,則①不對(duì);
不妨設(shè)β=0,α∈R,顯然使sin(α+β)=sinα+sinβ成立,則②對(duì);
因{an}為等比數(shù)列,設(shè)首項(xiàng)為a,公比為b,由am•an=ap•aq得abm-1•abn-1=abp-1•abq-1
若b=1,則m、n、p、q為任意實(shí)數(shù),若b≠1,則m+n=p+q,故甲是乙的充分不必要條件,則③不對(duì);
由復(fù)合命題判斷易知④是對(duì),所以真命題的序號(hào)是②④.
故答案為②④.
點(diǎn)評(píng):此題考查命題真假性的判斷,以及充要條件等,一般利用特殊值進(jìn)行判斷,該題屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①函數(shù)y=sin2x和圖象可以由y=sin(2x+
π
4
)
向右平移
π
4
個(gè)單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號(hào)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、已知直線a,b和平面α,有以下四個(gè)命題:①若a∥α,a∥b,則b∥α;②若a?α,b∩α=A,則a與b異面;③若a∥b,b⊥α,則a⊥α;④若a⊥b,a⊥α,則b∥α.其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線m,n和平面α,β,有以下四個(gè)命題:
①若m∥α,n∥β,α∥β,則m∥n;
②若m∥n,m?α,n⊥β,則α⊥β;
③若α∩β=m,m∥n,則n∥α且n∥β;
④若m⊥n,α∩β=m,則n⊥α或n⊥β.
其中假命題的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省雙流縣棠湖中學(xué)2012屆高三3月月考數(shù)學(xué)文科試題 題型:013

設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個(gè)命題:

(1)若α∥β,α∥γ,則β∥γ

(2)若α⊥β,m∥α,則m⊥β

(3)若m⊥α,m∥β,則α⊥β

(4)若m∥n,nα,則m∥α

其中真命題的序號(hào)是

[  ]

A.(1)(4)

B.(2)(3)

C.(2)(4)

D.(1)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案