【題目】設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x[(f(x)﹣f(﹣x)]<0的解集為 .
【答案】(﹣1,0)∪(0,1)
【解析】解:若奇函數(shù)f(x)在(0,+∞)上為增函數(shù),
則函數(shù)f(x)在(﹣∞,0)上也為增函數(shù),
又∵f(1)=0
∴f(﹣1)=0
則當(dāng)x∈(﹣∞,﹣1)∪(0,1)上時(shí),f(x)<0,f(x)﹣f(﹣x)<0
當(dāng)x∈(﹣1,0)∪(1,+∞)上時(shí),f(x)>0,f(x)﹣f(﹣x)>0
則不等式x[(f(x)﹣f(﹣x)]<0的解集為(﹣1,0)∪(0,1)
所以答案是:(﹣1,0)∪(0,1)
【考點(diǎn)精析】通過靈活運(yùn)用奇偶性與單調(diào)性的綜合,掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: =1(a>b>0)與雙曲線C2:x2﹣ =1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則( )
A.a2=
B.a2=3
C.b2=
D.b2=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是拋物線y2=4x上一動點(diǎn),則點(diǎn)P到點(diǎn)A(0,﹣1)的距離與到直線x=﹣1的距離和的最小值是( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=45°, , ,點(diǎn)D是AB的中點(diǎn),求:
(1)邊AB的長;
(2)cosA的值和中線CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x,y的不等式組 表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0 , y0),滿足x0﹣2y0=2,求得m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2<9},B={x|(x﹣2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集為A∪B,求a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)滿足下列條件:在定義域內(nèi)存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)具有性質(zhì)M;反之,若x0不存在,則稱函數(shù)f(x)不具有性質(zhì)M.
(1)證明:函數(shù)f(x)=2x具有性質(zhì)M,并求出對應(yīng)的x0的值;
(2)已知函數(shù) 具有性質(zhì)M,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校高中學(xué)生五一小長假參加實(shí)踐活動的情況,抽查了100名學(xué)生,統(tǒng)計(jì)他們假期參加實(shí)踐活動的時(shí)間,繪成的頻率分布直方圖如圖所示.
(1)求這100名學(xué)生中參加實(shí)踐活動時(shí)間在6~10小時(shí)內(nèi)的人數(shù);
(2)估計(jì)這100名學(xué)生參加實(shí)踐活動時(shí)間的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD(AB>AD)的周長為12,若將它關(guān)于對角線AC折起后,使邊AB與CD交于點(diǎn)P(如圖所示),則△ADP面積的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com