【題目】購買一件售價(jià)為5 000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月付款一次,過1個(gè)月再付款一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復(fù)利計(jì)算(上月利息計(jì)入下月本金),那么每期應(yīng)付款多少元?(精確到1元)
【答案】439元
【解析】
設(shè)每期應(yīng)付款x元,則第一期付款與到最后一期付款所生利息之和為x·(1+0.008)11元,依次寫出其余各期付款所生利息之和,求各期付款連同利息之和等于所購商品的售價(jià)及其利息之和為5 000×1.00812即可求出.
設(shè)每期應(yīng)付款x元,則第一期付款與到最后一期付款所生利息之和為x·(1+0.008)11元;
第二期付款與到最后一期付款所生利息之和為x·(1+0.008)10元;
…
第十一期付款與到最后一期付款所生利息之和為x·(1+0.008)元;
第十二期付款已沒有利息問題,即為x元.
所以各期付款連同利息之和為x(1+1.008+1.0082+…+1.00811)=x.
又所購商品的售價(jià)及其利息之和為5 000×1.00812,
于是有x=5 000×1.00812,
所以x≈439元.
答:每期應(yīng)付款約439元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中優(yōu)秀的人數(shù)是30人.
(1)請(qǐng)完成上面的列聯(lián)表;
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)系”;
參考公式與臨界值表 .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)開設(shè)A,B,C,D,E五門選修課,每位同學(xué)須彼此獨(dú)立地選三門課程,其中甲同學(xué)必選A課程,不選B課程,另從其余課程中隨機(jī)任選兩門課程.乙、丙兩名同學(xué)從五門課程中隨機(jī)任選三門課程.
(1)求甲同學(xué)選中C課程且乙同學(xué)未選中C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-x2+cx+d有極值.
(1)求實(shí)數(shù)c的取值范圍;
(2)若f(x)在x=2處取得極值,且當(dāng)x<0時(shí),f(x)<d2+2d恒成立,求實(shí)數(shù)d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-5ax+4a2<0,其中a>0,q:3<x≤4.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,∠ACB=45°,BC=3,過動(dòng)點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當(dāng)BD的長為多少時(shí),三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時(shí),設(shè)點(diǎn)E,M分別為棱BC,AC的中點(diǎn),試在棱CD上確定一點(diǎn)N,使得EN⊥BM,并求EN與平面BMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:Sn為數(shù)列{an}的前n項(xiàng)和,且2,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=nan , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是橢圓上一點(diǎn),|PF1|=λ|PF2|,∠F1PF2=,則橢圓離心率的取值范圍為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com