【題目】依據(jù)某地某條河流8月份的水文觀測(cè)點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.
(1)試估計(jì)該河流在8月份水位的眾數(shù);
(2)我們知道若該河流8月份的水位小于40米的頻率為f,該河流8月份的水位小于40米的情況下發(fā)生1級(jí)災(zāi)害的頻率為g,則該河流8月份的水位小于40且發(fā)生1級(jí)災(zāi)害的頻率為,其他情況類似.據(jù)此,試分別估計(jì)該河流在8月份發(fā)生12級(jí)災(zāi)害及不發(fā)生災(zāi)害的頻率,,;
(3)該河流域某企業(yè),在8月份,若沒受12級(jí)災(zāi)害影響,利潤(rùn)為500萬(wàn)元;若受1級(jí)災(zāi)害影響,則虧損100萬(wàn)元;若受2級(jí)災(zāi)害影響則虧損1000萬(wàn)元.現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:
方案 | 防控等級(jí) | 費(fèi)用(單位:萬(wàn)元) |
方案一 | 無(wú)措施 | 0 |
方案二 | 防控1級(jí)災(zāi)害 | 40 |
方案三 | 防控2級(jí)災(zāi)害 | 100 |
試問,如僅從利潤(rùn)考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說(shuō)明理由.
【答案】(1)37.5(2)發(fā)生0.155, 0.035;不發(fā)生0.81,,,分別為0.155,0.035,0.81(3)方案二,理由見解析
【解析】
(1)根據(jù)最高的矩形的中點(diǎn)即為眾數(shù),即可得到本題答案;
(2)由甲圖,得該河流8月份的水位小于40米,在40米和50米之間,大于50米的對(duì)應(yīng)的頻率,結(jié)合乙圖,即可算得該河流在8月份發(fā)生1級(jí)災(zāi)害、2級(jí)災(zāi)害和不發(fā)生災(zāi)害的對(duì)應(yīng)的頻率;
(3)把三種方案對(duì)應(yīng)的平均利潤(rùn)算出來(lái),比較大小,即可得到本題答案.
(1)由題得,,估計(jì)該河流在8月份水位的眾數(shù)為37.5米
(2)依據(jù)甲圖,該河流8月份的水位小于40米,在40米和50米之間,大于50米的頻率分別為,,.根據(jù)乙圖,該河流在8月份發(fā)生1級(jí)災(zāi)害的頻率為該河流在8月份發(fā)生2級(jí)災(zāi)害的頻率為該河流在8月份不發(fā)生災(zāi)害的頻率為估計(jì),,分別為0.155,0.035,0.81.
(3)由(2)若選擇方案一,則該企業(yè)在8月份的平均利潤(rùn)(萬(wàn)元);
若選擇方案二,則該企業(yè)在8月份的平均利潤(rùn)(萬(wàn)元);
若選擇方案三,則該企業(yè)在8月份的平均利潤(rùn)(萬(wàn)元).
由于,因此企業(yè)應(yīng)選方案二
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,P,Q,L分別為棱A1D1,C1D1,BC的中點(diǎn).
(1)求證:AC⊥QL;
(2)求四面體DPQL的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(Ⅰ)設(shè)為函數(shù)的導(dǎo)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上有最大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 ()的一個(gè)焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)記兩個(gè)極值點(diǎn)為,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是圓柱底面圓O的直徑,底面半徑,圓柱的表面積為,點(diǎn)在底面圓上,且直線與下底面所成的角的大小為.
(1)求的長(zhǎng);
(2)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與過原點(diǎn)的直線恰有四個(gè)交點(diǎn),設(shè)四個(gè)交點(diǎn)中橫坐標(biāo)最大值為,則( )
A. B. C. 0 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣a.
(1)當(dāng)a=1時(shí),解不等式f(x)>x+1;
(2)若存在實(shí)數(shù)x,使得f(x)f(x+1),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)在區(qū)間內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和,求證:數(shù)列為等比數(shù)列,并求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com