精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.

【答案】(1);(2MAB的中點,NPC的中點

【解析】

(1)由題意知,ABAD,AP兩兩垂直.以為正交基底,建立空間直角坐標系,求平面PCD的一個法向量為,由空間向量的線面角公式求解即可;(2)設 ,利用平面PCD,所以,得到的方程,求解即可確定M,N的位置

1)由題意知,AB,AD,AP兩兩垂直.

為正交基底,建立如圖所示的空間

直角坐標系,則

從而

設平面PCD的法向量

不妨取

所以平面PCD的一個法向量為

設直線PB與平面PCD所成角為所以

即直線PB與平面PCD所成角的正弦值為

2)設

所以.由(1)知,平面PCD的一個法向量為,因為平面PCD,所以

所以解得,

所以MAB的中點,NPC的中點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列說法正確的是()

A. 銳角是第一象限的角,所以第一象限的角都是銳角;

B. 如果向量,則;

C. 中,記,,則向量可以作為平面ABC內的一組基底;

D. ,都是單位向量,則.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若有兩個極值點,,且,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“冰桶挑戰(zhàn)賽”是一項社交網絡上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在24小時內接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網絡上發(fā)布自己被冰水澆遍全身的視頻內容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)和不接受挑戰(zhàn)是等可能的,且互不影響.

(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關,某調查機構進行了隨機抽樣調查,調查得到如下列聯表:

性別 成績

接受挑戰(zhàn)

不接受挑戰(zhàn)

總計

男性

45

15

60

女性

25

15

40

總計

70

30

100

根據表中數據,能有有90%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關”?

附:,其中.

2.706

3.841

6.635

10.828

0.10

0.05

0.010

0.001

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a=3,b=2 ,∠B=2∠A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,解不等式;

(2)若不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.

(1)證明:平面

(2)設點是線段的中點,求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C經過P(4,-2),Q(1,3)兩點,且圓心C在直線xy10上.

(1)求圓C的方程;

(2)若直線lPQ,且l與圓C交于點A,B且以線段AB為直徑的圓經過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)求函數的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數的性質即可得到值域.

(1)

,則

的對稱軸為,最小正周期;

(2)當時,

因為單調遞增,在單調遞減,

取最大值,在取最小值,

所以

所以

【點睛】

本題考查正弦函數圖像的性質,考查周期性,對稱性,函數值域的求法,考查二倍角公式以及輔助角公式的應用,屬于基礎題.

型】解答
束】
21

【題目】已知等比數列的前項和為,公比,,

(1)求等比數列的通項公式;

(2)設,求的前項和

查看答案和解析>>

同步練習冊答案