【題目】已知:函數(shù)且.
(1)求定義域;
(2)判斷的奇偶性,并說(shuō)明理由;
(3)求使的的解集.
【答案】(1);(2)是奇函數(shù);(3).
【解析】試題分析:(1)利用對(duì)數(shù)函數(shù)的指數(shù)大于零,列出不等式組,解不等式組即可求解函數(shù)的定義域.(2)利用對(duì)數(shù)的運(yùn)算法則可得,結(jié)合函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,可得為奇函數(shù).(3)利用對(duì)數(shù)函數(shù)的單調(diào)性與定義域化簡(jiǎn)不等式即可求解不等式.
試題解析:(1)由題意得 ,即﹣2<x<2.∴f(x)的定義域?yàn)椋ī?/span>2,2);
(2)∵對(duì)任意的x∈(﹣2,2),﹣x∈(﹣2,2)
f(﹣x)=loga(2﹣x)﹣loga(2+x)=﹣f(x),
∴f(x)=loga(2+x)﹣loga(2﹣x)是奇函數(shù);
(3)f(x)=loga(2+x)﹣loga(2﹣x)>0,即log2(2+x)>loga(2﹣x),
∴當(dāng)a∈(0,1)時(shí),可得2+x<2﹣x,即﹣2<x<0.
當(dāng)a∈(1,+∞)時(shí),可得2+x>2﹣x,即x∈(0,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正項(xiàng)數(shù)列{}滿足:,則稱此數(shù)列為“比差等數(shù)列”.
(1)請(qǐng)寫(xiě)出一個(gè)“比差等數(shù)列”的前3項(xiàng)的值;
(2)設(shè)數(shù)列{}是一個(gè)“比差等數(shù)列”
(i)求證:;
(ii)記數(shù)列{}的前項(xiàng)和為,求證:對(duì)于任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來(lái)自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
附:
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,圓的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)若,為直線與軸的交點(diǎn),是圓上一動(dòng)點(diǎn),求的最大值;
(2)若直線被圓截得的弦長(zhǎng)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),其傾斜角為,在以原點(diǎn)為極點(diǎn), 軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長(zhǎng)度單位),曲線C的極坐標(biāo)方程為.
(Ⅰ)若直線與曲線C有公共點(diǎn),求的取值范圍;
(Ⅱ)設(shè)為曲線C上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥DC,AE⊥DC,BE∥AD.M、N分別是AD、BE上的點(diǎn),且AM=BN,將三角形ADE沿AE折起,則下列說(shuō)法正確的是 (填上所有正確說(shuō)法的序號(hào)).
①不論D折至何位置(不在平面ABC內(nèi))都有MN∥平面DEC;
②不論D折至何位置都有MN⊥AE;
③不論D折至何位置(不在平面ABC內(nèi))都有MN∥AB;
④在折起過(guò)程中,一定存在某個(gè)位置,使EC⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響.部分統(tǒng)計(jì)數(shù)據(jù)如下表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績(jī)優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績(jī)不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計(jì)算的觀測(cè)值為10,則下列選項(xiàng)正確的是( )
A. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D. 在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在區(qū)間上的最值;
(2)討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),有恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com