【題目】在△ABC中,角AB,C所對(duì)邊分別為a,bc.c6,則△ABC外接圓的半徑大小是_____.

【答案】

【解析】

由題意結(jié)合三角函數(shù)恒等變換、正弦定理可得sinBcosCsinBsinC,結(jié)合sinB0,可求tanC1,結(jié)合范圍C∈(0π),可求,設(shè)△ABC外接圓的半徑大小為R,根據(jù)正弦定理即可求解△ABC外接圓的半徑,即可得解.

由條件知,

根據(jù)正弦定理得:,

所以sinAsinC(sinB+cosB)sinCsinB+sinCcosB,

sinAsin(B+C)sinBcosC+cosBsinC,

于是sinBcosCsinBsinC,

因?yàn)?/span>sinB0,所以cosCsinCtanC1,

C∈(0π),所以,

設(shè)△ABC外接圓的半徑大小為R,根據(jù)正弦定理得

因此.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車在我國(guó)各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車的指標(biāo)指標(biāo),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)

2

4

5

6

8

指標(biāo)

3

4

4

4

5

1)試求間的相關(guān)系數(shù),并說明是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強(qiáng)的線性相關(guān)關(guān)系).

2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值.

3)若某城市的共享單車指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車數(shù)量過多,對(duì)城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說明理由.

參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角梯形中,、分別是上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:

平面

②四點(diǎn)、、可能共面;

③若,則平面平面

④平面與平面可能垂直.其中正確的是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1直角三角形ACB中,,,點(diǎn)的中點(diǎn),,將沿折起,使面,如圖2.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,分別為的中點(diǎn),且.

1)求證:平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為,,軸的正半軸上一點(diǎn),交橢圓于,且,的內(nèi)切圓半徑為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)為圓上一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)sin(ωx+φ)cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為,則f()的值為( )

A.1B.1C..D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)常數(shù)且).

Ⅰ)當(dāng)時(shí);

設(shè),判斷函數(shù)的奇偶性,并說明理由;

求證:函數(shù)上是增函數(shù);

Ⅱ)設(shè)集合,若,求的取值范圍(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別是,,點(diǎn)是橢圓上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接,,設(shè)的內(nèi)角平分線的長(zhǎng)軸于點(diǎn)

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案