【題目】已知函數,且.
(1)求函數的極值;
(2)當時,證明:.
【答案】(1)有極大值,函數有極小值;(2)證明見解析.
【解析】試題分析:(1)求極值,可先求得導數,然后通過解不等式確定增區(qū)間,解不等式確定減區(qū)間,則可得極大值和極小值;(2)要證明此不等式,我們首先研究不等式左邊的函數,記,求出其導數,可知在上單調遞增,在上單調遞減,,這是時最小值,,這是時的最大值,因此要證明題中不等式,可分類,和分別證明.
試題解析:(1)依題意,,
故,
令,則或; 令,則,
故當時,函數有極大值,當時,函數有極小值.
(2) 由(1)知,令,
則,
可知在上單調遞增,在上單調遞減,令.
① 當時,,所以函數的圖象在圖象的上方.
② 當時,函數單調遞減,所以其最小值為最大值為2,而,所以函數的圖象也在圖象的上方.
綜上可知,當時,
科目:高中數學 來源: 題型:
【題目】對于在區(qū)間[m,n]上有意義的兩個函數f(x)與g(x),如果對任意x∈[m,n]均有|f(x)﹣g(x)|≤1,則稱f(x)與g(x)在[m,n]上是接近的;否則稱f(x)與g(x)在[m,n]上是非接近的.現有兩個函數f1(x)=loga(x﹣3a),與f2(x)=loga (a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論f1(x)與f1(x)在給定區(qū)間[a+2,a+3]上是否是接近的?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)某企業(yè)生產的一批產品中有一、二、三等品及次品共四個等級,1件不同等級產品的利潤(單位:元)如表1,從這批產品中隨機抽取出1件產品,該件產品為不同等級的概率如表2.
等級 | 一等品 | 二等品 | 三等品 | 次品 |
| ||||
等級 | 一等品 | 二等品 | 三等品 | 次品 |
利潤 |
|
表1 表2
若從這批產品中隨機抽取出的1件產品的平均利潤(即數學期望)為元.
(1) 設隨機抽取1件產品的利潤為隨機變量 ,寫出的分布列并求出的值;
(2) 從這批產品中隨機取出3件產品,求這3件產品的總利潤不低于17元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)若,求函數的圖象在處的切線方程;
(2)若,試討論方程的實數解的個數;
(3)當時,若對于任意的,都存在,使得,求滿足條件的正整數的取值的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐S﹣ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結論中: ①異面直線SB與AC所成的角為90°;
②直線SB⊥平面ABC;
③面SBC⊥面SAC;
④點C到平面SAB的距離是 .
其中正確結論的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了調查觀眾對某電視劇的喜愛程度,某電視臺在甲乙兩地隨機抽取了8名觀眾做問卷調查,得分結果如圖所示:
(1)計算甲地被抽取的觀眾問卷得分的中位數和乙地被抽取的觀眾問卷得分的平均數;
(2)用頻率估計概率,若從乙地的所有觀眾中再隨機抽取4人進行問卷調查,記問卷分數不低于80分的人數為,求的分布列與期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}中a2=2,a5= ,則a1a2+a2a3+a3a4+…+anan+1等于( )
A.16(1﹣4﹣n)
B.16(1﹣2n)
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com