【題目】數列{an}是等差數列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2.
(1)求通項公式an;
(2)若數列{an}為遞增數列,令bn=an+1+an+2+an+3+an+4,求數列{}的前n項和Sn.
【答案】(1)當x=1時,an =2n-4,當x=3時, an=4-2n;;(2)
【解析】
(1)題目給出了一個等差數列的前3項,根據等差中項概念列式a1+a3=2a2,然后把a1和a3代入得到關于x的方程,解方程,求出x后再分別代回a1=f(x+1)求a1,則d也可求,所以通項公式可求.
(2)利用數列是遞增數列求出通項公式,化簡數列的通項公式,通過裂項消項法求解數列的和即可.
解:(1)數列{an}為等差數列,所以a1+a3=2a2,
即f(x+1)+f(x-1)=0,又f(x)=x2-4x+2,
所以(x+1)2-4(x+1)+2+(x-1)2-4(x-1)+2=0,整理得x2-4x+3=0,解得x=1或x=3.
當x=1時,a1=f(x+1)=f(2)=22-4×2+2=-2,d=a2-a1=0-(-2)=2,
∴an=a1+(n-1)d=-2+2(n-1)=2n-4.
當x=3時,a1=f(x+1)=f(4)=42-4×4+2=2,d=0-2=-2.所以an=4-2n.
綜上:當x=1時,an =2n-4;當x=3時, an=4-2n.
(2)數列{an}為遞增數列,d>0,
所以數列{an}的通項公式為an=2n-4.
bn=an+1+an+2+an+3+an+4=8n+4,
==,
數列{}的前n項和Sn==.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數方程和直線的直角坐標方程;
( Ⅱ ) 設直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
【答案】(1);.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫出圓的參數方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數的值域來求得取值范圍.
【試題解析】
(Ⅰ)圓的參數方程為(為參數).
直線的直角坐標方程為.
(Ⅱ)由直線的方程可得點,點.
設點,則 .
.
由(Ⅰ)知,則 .
因為,所以.
【題型】解答題
【結束】
23
【題目】選修4-5:不等式選講
已知函數, .
(Ⅰ)若對于任意, 都滿足,求的值;
(Ⅱ)若存在,使得成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學高考結束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數據b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·浙江卷)已知數列{an}滿足a1=且an+1=an- (n∈N*).
(1)證明:1≤≤2(n∈N*);
(2)設數列{ }的前n項和為Sn,證明: (n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是偶函數,且滿足,當時, ,當時, 的最大值為.
(1)求實數的值;
(2)函數,若對任意的,總存在,使不等式恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別為, ,且離心率為, 為橢圓上任意一點,當時, 的面積為1.
(1)求橢圓的方程;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設直線的斜率為,直線的斜率為,求證: 為定值.
【答案】(1);(2)
【解析】試題分析:(1)設由題,由此求出,可得橢圓的方程;
(2)設, ,
當直線的斜率不存在時,可得;
當直線的斜率不存在時,同理可得.
當直線、的斜率存在時,,
設直線的方程為,則由消去通過運算可得
,同理可得,由此得到直線的斜率為,
直線的斜率為,進而可得.
試題解析:(1)設由題,
解得,則,
橢圓的方程為.
(2)設, ,
當直線的斜率不存在時,設,則,
直線的方程為代入,可得,
, ,則,
直線的斜率為,直線的斜率為,
,
當直線的斜率不存在時,同理可得.
當直線、的斜率存在時,,
設直線的方程為,則由消去可得:
,
又,則,代入上述方程可得
,
,則
,
設直線的方程為,同理可得,
直線的斜率為,
直線的斜率為,
.
所以,直線與的斜率之積為定值,即.
【題型】解答題
【結束】
21
【題目】已知函數, ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射擊運動員進行射擊訓練,前三次射擊在靶上的著彈點剛好是邊長為的等邊三角形的三個頂點.
(Ⅰ)第四次射擊時,該運動員瞄準區(qū)域射擊(不會打到外),則此次射擊的著彈點距的距離都超過的概率為多少?(彈孔大小忽略不計)
(Ⅱ) 該運動員前三次射擊的成績(環(huán)數)都在區(qū)間內,調整一下后,又連打三槍,其成績(環(huán)數)都在區(qū)間內.現從這次射擊成績中隨機抽取兩次射擊的成績(記為和)進行技術分析.求事件“”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com