【題目】2021年開(kāi)始,我省將試行“3+1+2“的普通高考新模式,即除語(yǔ)文、數(shù)學(xué)、外語(yǔ)3門必選科目外,考生再?gòu)奈锢怼v史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個(gè)學(xué)生的六門科目綜合成績(jī)按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績(jī)雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。

A.甲的物理成績(jī)領(lǐng)先年級(jí)平均分最多

B.甲有2個(gè)科目的成績(jī)低于年級(jí)平均分

C.甲的成績(jī)從高到低的前3個(gè)科目依次是地理、化學(xué)、歷史

D.對(duì)甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果

【答案】C

【解析】

根據(jù)圖表依次對(duì)所給選項(xiàng)進(jìn)行判斷.

由雷達(dá)圖可知,甲的物理成績(jī)領(lǐng)先年級(jí)平均分約為1.5,化學(xué)成績(jī)領(lǐng)先年級(jí)平均分約

1,生物成績(jī)約等于年級(jí)平均分,歷史成績(jī)低于年級(jí)平均分,地理成績(jī)領(lǐng)先年級(jí)平均

分約為1,政治成績(jī)低于年級(jí)平均分,故A、B、D正確;而甲的成績(jī)從高到低的前3個(gè)

科目依次是地理、化學(xué)、生物(物理),故C選項(xiàng)錯(cuò)誤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線過(guò)點(diǎn),直線過(guò)點(diǎn)與拋物線交于 兩點(diǎn).點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,連接.

(1)求拋物線線的標(biāo)準(zhǔn)方程;

(2)問(wèn)直線是否過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017安徽蚌埠一模)已知橢圓C:=1(a>b>0)的離心率為,F1,F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長(zhǎng)是8+2.

(1)求橢圓C的方程;

(2)設(shè)圓T:(x-2)2+y2=,過(guò)橢圓的上頂點(diǎn)M作圓T的兩條切線交橢圓于E,F兩點(diǎn),求直線EF的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若的極大值點(diǎn),求的值;

2)若上只有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: 為參數(shù))

(1)求圓和直線的極坐標(biāo)方程;

(2)點(diǎn) 的極坐標(biāo)為,直線與圓相較于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)原信息為,傳輸信息為,其中, , 運(yùn)算規(guī)則為: , , , .例如:原信息為111,則傳輸信息為01111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息出錯(cuò)的是( )

A. 01100 B. 11010 C. 10110 D. 11000

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,不能證明APBC的條件是(  )

A. APPB,APPC

B. APPB,BCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,ABADACCD,∠ABC=60°,PAABBC,EPC的中點(diǎn).證明:

(1)CDAE;

(2)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)拋物線的開(kāi)口向 、對(duì)稱軸為直線 、頂點(diǎn)坐標(biāo) ;

2)當(dāng) 時(shí),函數(shù)有最 值,是 ;

3)當(dāng) 時(shí),的增大而增大;當(dāng) 時(shí),的增大而減;

4)該函數(shù)圖象可由的圖象經(jīng)過(guò)怎樣的平移得到的?

查看答案和解析>>

同步練習(xí)冊(cè)答案