【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.
(1)求證:平面;
(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由已知可得,結(jié)合,由直線與平面垂直的判定可得平面;
(2)由(1)知,,則,,兩兩互相垂直,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,設(shè),0,,由二面角的余弦值為求解,再由空間向量求解直線與平面所成角的正弦值.
(1)證明:因?yàn)樗倪呅?/span>是等腰梯形,,,所以.又,所以,
因此,,
又,
且,,平面,
所以平面.
(2)取的中點(diǎn),連接,,
由于,因此,
又平面,平面,所以.
由于,,平面,
所以平面,故,
所以為二面角的平面角.在等腰三角形中,由于,
因此,又,
因?yàn)?/span>,所以,所以
以為軸、為軸、為軸建立空間直角坐標(biāo)系,則,,
,,
設(shè)平面的法向量為
所以,即,令,則,,
則平面的法向量,,
設(shè)直線與平面所成角為,則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的零點(diǎn)及單調(diào)區(qū)間;
(2)求證:曲線存在斜率為8的切線,且切點(diǎn)的縱坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,,,給出以下四個(gè)命題:①為偶函數(shù);②為偶函數(shù);③的最小值為0;④有兩個(gè)零點(diǎn).其中真命題的是( ).
A.②④B.①③C.①③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在黨中央的正確領(lǐng)導(dǎo)下,通過全國(guó)人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個(gè)地區(qū)采取防護(hù)措施后,統(tǒng)計(jì)了從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù),繪制成如下折線圖:
(1)根據(jù)圖中甲、乙兩個(gè)地區(qū)折線圖的信息,寫出你認(rèn)為最重要的兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)治療“新冠肺炎”藥品的研發(fā)成了當(dāng)務(wù)之急,某藥企計(jì)劃對(duì)甲地區(qū)的項(xiàng)目或乙地區(qū)的項(xiàng)目投入研發(fā)資金,經(jīng)過評(píng)估,對(duì)于項(xiàng)目,每投資十萬元,一年后利潤(rùn)是l.38萬元、1.18萬元、l.14萬元的概率分別為、、;對(duì)于項(xiàng)目,利潤(rùn)與產(chǎn)品價(jià)格的調(diào)整有關(guān),已知項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,每次價(jià)格調(diào)整中,產(chǎn)品價(jià)格下調(diào)的概率都是,記項(xiàng)目一年內(nèi)產(chǎn)品價(jià)格的下調(diào)次數(shù)為,每投資十萬元,取0、1、2時(shí),一年后相應(yīng)利潤(rùn)是1.4萬元、1.25萬元、0.6萬元.記對(duì)項(xiàng)目投資十萬元,一年后利潤(rùn)的隨機(jī)變量為,記對(duì)項(xiàng)目投資十萬元,一年后利潤(rùn)的隨機(jī)變量為.
(i)求,的概率分布列和數(shù)學(xué)期望,;
(ii)如果你是投資決策者,將做出怎樣的決策?請(qǐng)寫出決策理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè)兩點(diǎn),,且,若函數(shù)的圖象分別在點(diǎn)、處的兩條切線互相垂直,求的最小值;
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等,在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)次.
方式二:混合檢驗(yàn),將其中(且)份血液樣本分別取樣混合在一起檢驗(yàn).
若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.
(1)現(xiàn)有份血液樣本,其中只有份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來的概率.
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次為.
(i)若,試求關(guān)于的函數(shù)關(guān)系式;
(ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若當(dāng)時(shí),取得極值,求的值,并求的單調(diào)區(qū)間.
(2)若存在兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓上一動(dòng)點(diǎn)(與左、右頂點(diǎn)不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.
(1)求橢圓C的方程;
(2)過的直線交橢圓于兩點(diǎn),過作軸的垂線交橢圓與另一點(diǎn)(不與重合).設(shè)的外心為,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(Ⅰ)試估計(jì)廚余垃圾投放正確的概率
(Ⅱ)試估計(jì)生活垃圾投放錯(cuò)誤的概率
(Ⅲ)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c,的方差最大時(shí),寫出a,b,c的值(結(jié)論不要求證明),并求此時(shí)的值.
(注:,其中為數(shù)據(jù)的平均數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com