【題目】已知直線,和兩點(diǎn),給出如下結(jié)論其中真命題的序號(hào)是________

①當(dāng)變化時(shí),分別經(jīng)過(guò)定點(diǎn)

②不論為何值時(shí),都互相垂直;

③如果交于點(diǎn),則的最大值是2;

為直線上的點(diǎn),則的最小值是

【答案】①②④

【解析】

根據(jù)直線方程的形式可以得到它們各自經(jīng)過(guò)的定點(diǎn)以及兩條直線是相互垂直的,故可判斷①②正確,又可判斷在一個(gè)定圓上,從而可求的最大值為,故③錯(cuò)誤,求出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)后可求的最小值,從而可判斷④正確與否.

因?yàn)橹本的方程為,故該直線過(guò)

同理直線過(guò),所以當(dāng)變化時(shí),分別經(jīng)過(guò)定點(diǎn),①正確.

因?yàn)?/span>,故直線垂直,故②正確.

因?yàn)橹本垂直,故,

所以,

根據(jù)基本不等式有,故

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故③錯(cuò)誤.

設(shè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,則,故

所以,

當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,故④正確.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,則橢圓的離心率的取值范圍為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1時(shí),解關(guān)于x的不等式;

2)若不等式對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn)。

(1)求的取值范圍;

(2)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在冪函數(shù)的圖像上.

1)求的表達(dá)式;

2)設(shè),求函數(shù)的零點(diǎn),推出函數(shù)的另外一個(gè)性質(zhì)(只要求寫(xiě)出結(jié)果,不要求證明),并畫(huà)出函數(shù)的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓上一點(diǎn),分別為關(guān)于軸,原點(diǎn),軸的對(duì)稱點(diǎn),

1)求四邊形面積的最大值;

2)當(dāng)四邊形最大時(shí),在線段上任取一點(diǎn),若過(guò)的直線與橢圓相交于兩點(diǎn),且中點(diǎn)恰為,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C=2px經(jīng)過(guò)點(diǎn)(1,2).過(guò)點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)AB,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求與直線3x4y70垂直,且與原點(diǎn)的距離為6的直線方程;

(2)求經(jīng)過(guò)直線l12x3y50l27x15y10的交點(diǎn),且平行于直線x2y30的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200.為了解學(xué)生本學(xué)期課外閱讀情況,現(xiàn)采用分層隨機(jī)抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們的課外閱讀時(shí)間,然后按初中學(xué)生和高中學(xué)生分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:h)分為5組:,,,,并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30h的學(xué)生人數(shù)為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案