【題目】如圖,在四棱錐中,底面為正方形,平面,,點(diǎn)分別為的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)求證:平面;

(Ⅲ)求平面與平面所成二面角(銳角)的余弦值.

【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)

【解析】

(Ⅰ)以為原點(diǎn),所在直線分別為軸、軸、軸,再證明即可.

(Ⅱ)同(Ⅰ),證明與平面的法向量垂直即可.

(Ⅲ)分別計(jì)算平面與平面的法向量再求解二面角的夾角余弦值即可.

解:(Ⅰ)因?yàn)?/span>平面,所以,,且底面為正方形,

所以.為原點(diǎn),所在直線分別為軸、軸、軸,建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,.

,,

.

所以.

(Ⅱ)由(Ⅰ)知,,,.

,

所以平面.

所以是平面的法向量.

因?yàn)?/span>,

平面,

所以∥平面.

(Ⅲ)設(shè)平面的法向量為,則

,則,.

于是.

平面的法向量為.

設(shè)平面與平面所成二面角(銳角),

.

所以平面與平面所成二面角(銳角)的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20161月至201812月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,判斷下列結(jié)論:

1)月接待游客量逐月增加;

2)年接待游客量逐年增加;

3)各年的月接待游客量高峰期大致在7,8月;

4)各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn).

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln (x+1)-x,a∈R.

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為2,離心率為,,分別是橢圓的右頂點(diǎn)和下頂點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知是橢圓內(nèi)一點(diǎn),直線的斜率之積為,直線分別交橢圓于兩點(diǎn),記的面積分別為,.

①若兩點(diǎn)關(guān)于軸對(duì)稱,求直線的斜率;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,若對(duì)于,,使得成立,則稱集合M是“互垂點(diǎn)集”.給出下列四個(gè)集合:;;;.其中是“互垂點(diǎn)集”集合的為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓,直線經(jīng)過(guò)點(diǎn),直線經(jīng)過(guò)點(diǎn),直線直線,且直線分別與橢圓相交于兩點(diǎn)和兩點(diǎn).

()分別為橢圓的左、右焦點(diǎn),且直線軸,求四邊形的面積;

()若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;

()()的條件下,判斷四邊形能否為矩形,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,中點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)零點(diǎn),求滿足條件的最小正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案