【題目】三棱柱中,為的中點(diǎn),點(diǎn)在側(cè)棱上,平面.
(1)證明:是的中點(diǎn);
(2)設(shè),四邊形為正方形,四邊形為矩形,且異面直線與所成的角為30°,求兩面角的余弦值.
【答案】(1)見解析;(2)二面角的余弦值為.
【解析】
(1)取的中點(diǎn),利用中位線得出利用線面平行的判定,得出平面,利用面面平行的判定得出平面平面進(jìn)而得出而為的中點(diǎn),所以為的中點(diǎn)。
(2)建立直角坐標(biāo)系,設(shè),,利用異面直線與所成的角為30°,求出進(jìn)而求出二面角的余弦值。
(1)證明:取的中點(diǎn),連、,因?yàn)?/span>為中點(diǎn),所以.
平面,平面,平面.
又由已知平面,
且,所以平面平面.
又平面,所平面.
而平面,且平面平面,所以,而為的中點(diǎn),所以為的中點(diǎn).
(2)由題設(shè)知:、、兩兩垂直,以為軸,為軸,為軸,建立空間直角坐標(biāo)系.
設(shè),,則,,,,,
所以,.因?yàn)楫惷嬷本與所成的角為30°,
所以 ,解得:,于是.
設(shè)平面的法向量為,因?yàn)?/span>,
所以,取,則,所以.
又是平面的一個(gè)法向量,所以,
即二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表:
身高x(cm) | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 |
體重y(kg) | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 |
已知與之間存在很強(qiáng)的線性相關(guān)性,
(Ⅰ)據(jù)此建立與之間的回歸方程;
(Ⅱ)若體重超過相同身高男性體重平均值的倍為偏胖,低于倍為偏瘦,那么這個(gè)地區(qū)一名身高體重為 的在校男生的體重是否正常?
參考數(shù)據(jù):
附:對(duì)于一組數(shù)據(jù),其回歸直線 中的斜率和截距的最小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角、、的對(duì)邊分別為、、,為內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:
①;
②;
③;
④;
則點(diǎn)分別為的( )
A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心
C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩鐵路線垂直相交于站,若已知千米,甲火車從站出發(fā),沿方向以千米小時(shí)的速度行駛,同時(shí)乙火車從站出發(fā),沿方向,以千米小時(shí)的速度行駛,至站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長忽略不計(jì)).
(1)求甲、乙兩車的最近距離(用含的式子表示);
(2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時(shí)所用時(shí)間為小時(shí),問為何值時(shí)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比為 q的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設(shè){bn}是以2為首項(xiàng),q為公差的等差數(shù)列,其前n項(xiàng)和為Sn,當(dāng)n≥2時(shí),比較Sn與bn的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.
(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場調(diào)研,求甲商家被抽到的概率;
(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);
(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com