【題目】孝感車天地關于某品牌汽車的使用年限(年)和所支出的維修費用(千元)由如表的統(tǒng)計資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關;如果線性相關,求回歸直線方程;
(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?
()
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調增函數(shù),求a的取值范圍;
(2)設函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( )x的圖象與函數(shù)g(x)的圖象關于直線y=x對稱,令h(x)=g(1﹣|x|),則關于h(x)有下列命題:
①h(x)的圖象關于原點對稱;
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號為: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線方程為.
(1)求該雙曲線的實軸長、虛軸長、離心率;
(2)若拋物線的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)與有相同的極值點.
(I)求函數(shù)的解析式;
(II)證明:不等式(其中e為自然對數(shù)的底數(shù));
(III)不等式對任意恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體是由三棱柱截去一部分后而成, 是的中點.
(Ⅰ)若在上,且為的中點,求證:直線//平面
(Ⅱ) 若平面, , 求點到面的距離;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是橢圓的左、右焦點,離心率為,分別是橢圓的上、下頂點,.
(1)求橢圓的方程;
(2)過作直線與交于兩點,求三角形面積的最大值(是坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(1)求橢圓的方程;
(2)設點在軸上的射影為點,過點的直線與橢圓相交于, 兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中均為實數(shù), 為自然對數(shù)的底數(shù).
(I)求函數(shù)的極值;
(II)設,若對任意的,
恒成立,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com