【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,且
f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
【答案】(1) f(x)是偶函數(shù)(2)
【解析】試題分析:(1)因?yàn)?/span>f(1+x)=f(1-x),所以f(-x)=f(2+x),又f(x)是最小正周期為 2的函數(shù),所以f(x+2)=f(x),則 f(-x)=f(x),所以得f(x)是偶函數(shù);
(2)由-1≤x≤0時(shí),f(x)=-x,根據(jù)f(x)是偶函數(shù)得當(dāng)0≤x≤1時(shí),f(x)解析式;由f(x)是最小正周期為 2的函數(shù),得1≤x≤2時(shí),f(x)解析式.
試題解析:
(1)∵f(1+x)=f(1-x),∴f(-x)=f(2+x).
又f(x+2)=f(x),∴f(-x)=f(x).
又f(x)的定義域?yàn)?/span>R,
∴f(x)是偶函數(shù).
(2)當(dāng)x∈[0,1]時(shí),-x∈[-1,0],
則f(x)=f(-x)=x;
進(jìn)而當(dāng)1≤x≤2時(shí),-1≤x-2≤0,
f(x)=f(x-2)=-(x-2)=-x+2.
故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會(huì),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, 平面, , .過的平面交于點(diǎn),交于點(diǎn).
(l)求證: 平面;
(Ⅱ)求證:四邊形為平行四邊形;
(Ⅲ)若是,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面α外有兩條直線m和n,如果m和n在平面α內(nèi)的投影分別是m1和n1,給出下列四個(gè)命題:①m1⊥n1m⊥n;②m⊥nm1⊥n1;③m1與n1相交m與n相交或重合;④m1與n1平行m與n平行或重合.其中不正確的命題個(gè)數(shù)是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;
(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了鼓勵(lì)學(xué)生熱心公益,服務(wù)社會(huì),成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學(xué)生提供了4次參加公益活動(dòng)的機(jī)會(huì),學(xué)生可通過網(wǎng)路平臺(tái)報(bào)名參加活動(dòng).為了解學(xué)生實(shí)際參加這4次活動(dòng)的情況,該校隨機(jī)抽取100名學(xué)生進(jìn)行調(diào)查,數(shù)據(jù)統(tǒng)計(jì)如下表,其中“√”表示參加,“×”表示未參加.
(Ⅰ)從該校所有學(xué)生中任取一人,試估計(jì)其2017年12月恰參加了2次學(xué)校組織的公益活動(dòng)的概率;
(Ⅱ)若在已抽取的100名學(xué)生中,2017年12月恰參加了1次活動(dòng)的學(xué)生比4次活動(dòng)均未參加的學(xué)生多17人,求的值;
(Ⅲ)若學(xué)生參加每次公益活動(dòng)可獲得10個(gè)公益積分,試估計(jì)該校4000名學(xué)生中,2017年12月獲得的公益積分不少于30分的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC=30°,BM⊥AC于點(diǎn)M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(1)當(dāng)時(shí),若函數(shù)與的圖象在處有相同的切線,求的值;
(2)當(dāng)時(shí),若對任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;
(3)當(dāng)時(shí),設(shè)函數(shù)與的圖象交于 兩點(diǎn).求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com