【題目】已知函數(shù)

(I)求函數(shù)f(x)的最小正周期和對稱中心的坐標(biāo)

(II)設(shè),求函數(shù)g(x)在上的最大值,并確定此時x的值

【答案】(I) , . (II) 見解析.

【解析】試題分析:()由二倍角公式和化一公式化簡可得;

()由()知的解析式,把代入求,進(jìn)而求出g(x),結(jié)合x的范圍,求出最大值即可.

試題解析:(I)

∴函數(shù)f(x)的最小正周期

,得,

∴函數(shù)f(x)的對稱中心的坐標(biāo)為.

(II)由(I)可得f(x)=2sin[ (x)+]=2sin(x),

g(x)=[f(x)]2=4×=2-2cos(3x),

x∈[-,],∴-≤3x,

當(dāng)3x=π,即x時,g(x)max=4.

點(diǎn)睛:三角函數(shù)式的化簡要遵循“三看”原則:(1)一看“角”,這是最重要的一環(huán),通過看角之間的區(qū)別和聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式;(2)而看“函數(shù)名稱”看函數(shù)名稱之間的差異,從而確定使用公式,常見的有“切化弦”;(3)三看“結(jié)構(gòu)特征”,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如“遇到分式通分”等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且,數(shù)列滿足,,其前9項(xiàng)和為63.

(1)求數(shù)列的通項(xiàng)公式;

(2)令,數(shù)列的前n項(xiàng)和為,若對任意正整數(shù)n,都有,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運(yùn)動員的5次測試成績?nèi)缦聢D所示:

5 7

1

6 8

8 8 2

2

3 6 7

設(shè)s1 , s2分別表示甲、乙兩名運(yùn)動員測試成績的標(biāo)準(zhǔn)差, 分別表示甲、乙兩名運(yùn)動員測試成績的平均數(shù),則有(
A. ,s1<s2
B. ,s1>s2
C. ,s1>s2
D. ,s1=s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體ABCDABC′D′中,AB=2 ,AD=2 ,AA′=2,

(Ⅰ)求異面直線BC′ 和AD所成的角;

(Ⅱ)求證:直線BC′∥平面ADDA′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱ABCD﹣A1B1C1D1的底面是邊長為2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,設(shè)E為CD中點(diǎn)

(1)求證:D1E⊥平面BEC1
(2)點(diǎn)F在線段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標(biāo)系的坐標(biāo)平面內(nèi),若函數(shù)的圖象與軸圍成一個封閉區(qū)域,將區(qū)域沿軸的正方向上移4個單位,得到幾何體如圖一.現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時,,若有三個零點(diǎn),則實(shí)數(shù)的取值集合是( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是直線x=4上一動點(diǎn),以P為圓心的圓Γ經(jīng)定點(diǎn)B(1,0),直線l是圓Γ在點(diǎn)B處的切線,過A(﹣1,0)作圓Γ的兩條切線分別與l交于E,F(xiàn)兩點(diǎn).

(1)求證:|EA|+|EB|為定值;

(2)設(shè)直線l交直線x=4于點(diǎn)Q,證明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一裝有水的直三棱柱容器(厚度忽略不計(jì)),上下底面均為邊長為5的正三角形,側(cè)棱為10,側(cè)面水平放置,如圖所示,點(diǎn) , , 分別在棱, , , 上,水面恰好過點(diǎn) , , ,且

(1)證明: ;

(2)若底面水平放置時,求水面的高.

查看答案和解析>>

同步練習(xí)冊答案