【題目】已知橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)P.

(1)求橢圓C的離心率;

(2)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

【答案】見解析

【解析】

解:(1)由橢圓定義知,

2a=|PF1|+|PF2|

=2

所以a=.

又由已知,得c =1,

所以橢圓C的離心率e=.

(2)由(1)知,橢圓C的方程為+y2=1.

設(shè)點(diǎn)Q的坐標(biāo)為(x,y).

①當(dāng)直線l與x軸垂直時(shí),直線l與橢圓C交于(0,1),(0,-1)兩點(diǎn),此時(shí)點(diǎn)Q的坐標(biāo)為.

②當(dāng)直線l與x軸不垂直時(shí),設(shè)直線l的方程為y=kx+2.

因?yàn)镸,N在直線l上,可設(shè)點(diǎn)M,N的坐標(biāo)分別為(x1,kx1+2),(x2,kx2+2),則|AM|2=(1+k2)x,|AN|2=(1+k2)x.

又|AQ|2=x2+(y-2)2=(1+k2)x2.

,得

.①

將y=kx+2代入+y2=1中,得

(2k2+1)x2+8kx+6=0.②

由Δ=(8k)2-4×(2k2+1)×6>0,

得k2>.

由②可知,x1+x2,x1x2,

代入①中并化簡(jiǎn),得x2.③

因?yàn)辄c(diǎn)Q在直線y=kx+2上,所以k=,代入③中并化簡(jiǎn),

得10(y-2)2-3x2=18.

由③及k2>,可知0<x2<,

即x∈.

又點(diǎn)滿足10(y-2)2-3x2=18,故x∈.

由題意知Q(x,y)在橢圓C內(nèi),

所以-1≤y≤1.

又由10(y-2)2=18+3x2

(y-2)2,且-1≤y≤1,

則y∈.

所以點(diǎn)Q的軌跡方程為10(y-2)2-3x2=18,

其中x∈,y∈.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程為.

I)當(dāng)時(shí),判斷直線的關(guān)系;

II)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求證:EG⊥DF;

(2)求BE與平面EFGH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備利用暑假時(shí)間去旅游,媽媽為小明提供四個(gè)景點(diǎn),九寨溝、泰山、長(zhǎng)白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識(shí)制定一個(gè)方案來決定去哪個(gè)景點(diǎn):(如圖)曲線和直線交于點(diǎn).以為起點(diǎn),再從曲線上任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為.若去九寨溝;若去泰山;若去長(zhǎng)白山; 去武夷山.

(1)若從這六個(gè)點(diǎn)中任取兩個(gè)點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點(diǎn)作為向量的終點(diǎn),則小明決定去武夷山.點(diǎn)在曲線上運(yùn)動(dòng),若點(diǎn)的坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知M(x0,y0)是橢圓C:=1上的任一點(diǎn),從原點(diǎn)O向圓M:(x-x0)2+(y-y0)2=2作兩條切線,分別交橢圓于點(diǎn)P,Q.

(1)若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1k2為定值;

(2)試問|OP|2+|OQ|2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-ax+ln(x+1)(a∈R).

(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);

(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;

(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項(xiàng),則剩下三項(xiàng)構(gòu)成等差數(shù)列的概率為( )

A. B.

C.1或 D.1或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若在區(qū)間上任取三個(gè)數(shù)、、,均存在以、、為邊長(zhǎng)的三角形,則實(shí)數(shù)的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知垂直于以為直徑的圓所在平面,點(diǎn)在線段上,點(diǎn)為圓上一點(diǎn),且

(Ⅰ) 求證:

(Ⅱ) 求二面角余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案