【題目】“城市呼喚綠化”,發(fā)展園林綠化事業(yè)是促進(jìn)國家經(jīng)濟法陣和城市建設(shè)事業(yè)的重要組成部分,某城市響應(yīng)城市綠化的號召,計劃建一如圖所示的三角形ABC形狀的主題公園,其中一邊利用現(xiàn)成的圍墻BC,長度為100 米,另外兩邊AB,AC使用某種新型材料圍成,已知∠BAC=120°,AB=x,AC=y(x,y單位均為米).
(1)求x,y滿足的關(guān)系式(指出x,y的取值范圍);
(2)在保證圍成的是三角形公園的情況下,如何設(shè)計能使所用的新型材料總長度最短?最短長度是多少?
【答案】
(1)解:在△ABC中,由余弦定理,得AB2+AC2﹣2ABACcosA=BC2,
所以x2+y2﹣2xycos120°=30000,
即x2+y2+xy=30000,
又因為x>0,y>0,所以
(2)解:要使所用的新型材料總長度最短只需x+y的最小,
由(1)知,x2+y2+xy=30000,所以(x+y)2﹣30000=xy,
因為 ,所以 ,
則(x+y)2≤40000,即x+y≤200,
當(dāng)且僅當(dāng)x=y=100時,上式不等式成立.
故當(dāng)AB,AC邊長均為100米時,所用材料長度最短為200米
【解析】(1)根據(jù)題意,由余弦定理可得x2+y2﹣2xycos120°=30000,變形可得x2+y2+xy=30000,分析x、y的取值范圍即可得答案;(2)由(1)可得x2+y2+xy=30000,對其變形可得(x+y)2﹣30000=xy,結(jié)合基本不等式可得 ,解可得x+y≤200,分析可得答案.
【考點精析】本題主要考查了基本不等式在最值問題中的應(yīng)用和余弦定理的定義的相關(guān)知識點,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”;余弦定理:;;才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(an , 2n), =(2n+1 , ﹣an+1),n∈N* , 向量 與 垂直,且a1=1
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{anbn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù) 的極小值;
(2)若函數(shù)在上為增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有教職工500人,對他們進(jìn)行年齡狀況和受教育程度的調(diào)查,其結(jié)果如下:
高中 | ? | 本科 | 研究生 | 合計 | |
35歲以下 | 10 | 150 | 50 | 35 | 245 |
35﹣50 | 20 | 100 | 20 | 13 | 153 |
50歲以上 | 30 | 60 | 10 | 2 | 102 |
隨機的抽取一人,求下列事件的概率:
(1)50歲以上具有專科或?qū)?埔陨蠈W(xué)歷;
(2)具有本科學(xué)歷;
(3)不具有研究生學(xué)歷.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足a1=b1=3,a2=b4 , a3=b13 .
(1)求數(shù)列{an}的{bn}通項公式;
(2)記cn=anbn , 求數(shù)列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=sin(2x+ )cos(x﹣ )+cos(2x+ )sin( ﹣x)的圖象的一條對稱軸方程是( )
A.x=
B.x=
C.x=π
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)列{an}的前n項和Sn= ,n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2an+(﹣1)nan , 求數(shù)列{bn}的前2n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設(shè)f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數(shù)k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com