【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對甲、乙兩個品牌各5種型號的手機(jī)在相同環(huán)境下?lián)尩降募t包個數(shù)進(jìn)行統(tǒng)計,得到如下數(shù)據(jù):

手機(jī)品牌 型號

I

II

III

IV

V

甲品牌(個)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機(jī)品牌 紅包個數(shù)

優(yōu)

非優(yōu)

合計

甲品牌(個)

乙品牌(個)

合計

(1)如果搶到紅包個數(shù)超過5個的手機(jī)型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個數(shù)與手機(jī)品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機(jī)進(jìn)行大規(guī)模宣傳銷售.

①求在型號I被選中的條件下,型號II也被選中的概率;

②以表示選中的手機(jī)型號中搶到的紅包超過5個的型號種數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

【答案】(1)見解析;(2)①;②分布列見解析,期望為

【解析】試題分析:

(1)利用題意寫出列聯(lián)表,求得,則沒有85%的理由認(rèn)為搶到紅包個數(shù)與手機(jī)品牌有關(guān).

(2)利用超幾何分布的結(jié)論寫出分布列,結(jié)合分布列可求得期望為

試題解析:⑴根據(jù)題意列出列聯(lián)表如下:

紅包個數(shù)

手機(jī)品牌

優(yōu)

非優(yōu)

合計

甲品牌(個)

3

2

5

乙品牌(個)

2

3

5

合計

5

5

10

所以沒有85%的理由認(rèn)為搶到紅包個數(shù)與手機(jī)品牌有關(guān)

⑵① 型號I被選中為事件; 型號II被選中為事件

, ,

;

;

的分布列為:

1

2

3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, ,映射滿足,求滿足條件的映射的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如下圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,底面,且,的中點(diǎn),上,且.

1)求證:平面平面;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè),若存在使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高二年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

1)求出表中,及圖中的值;

2)若該校高二學(xué)生有人,試估計該校高二學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);

3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于次的學(xué)生中任選人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求 的單調(diào)區(qū)間;

(2)若曲線 與直線只有一個交點(diǎn), 求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報是氣象專家根據(jù)預(yù)測的氣象資料和專家們的實(shí)際經(jīng)驗(yàn),經(jīng)過分析推斷得到的,在現(xiàn)實(shí)的生產(chǎn)生活中有著重要的意義,某快餐企業(yè)的營銷部門對數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營情況與降雨填上和降雨量的大小有關(guān).

(1)天氣預(yù)報所,在今后的三天中,每一天降雨的概率為40%,該營銷部分通過設(shè)計模擬實(shí)驗(yàn)的方法研究三天中恰有兩天降雨的概率,利用計算機(jī)產(chǎn)生0大9之間取整數(shù)值的隨機(jī)數(shù),并用表示下雨,其余個數(shù)字表示不下雨,產(chǎn)生了20組隨機(jī)數(shù):

求由隨機(jī)模擬的方法得到的概率值;

(2)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小(單位:毫米)與其出售的快餐份數(shù)成線性相關(guān)關(guān)系,該營銷部門統(tǒng)計了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:

試建立關(guān)于的回歸方程,為盡量滿足顧客要求又不在造成過多浪費(fèi),預(yù)測降雨量為6毫米時需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))

附注:回歸方程中斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M1,0),傾斜角為

)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;

)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|

查看答案和解析>>

同步練習(xí)冊答案