【題目】已知橢圓C的方程為=1,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn);若D(7,0),則過(guò)D、M、N三點(diǎn)的圓必過(guò)x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為________

【答案】(1.0)

【解析】設(shè)A(﹣2,0),B(2,0),P(x0,y0),

+=1,即有y02=3(1﹣),

設(shè)PA,PB的斜率為k1,k2,

則k1k2= ==﹣

設(shè)PA:y=k1(x+2),

則M(4,6k1),

PB:y=k2(x﹣2),則N(4,2k2),

kDM=﹣ =﹣2k1,kDN=﹣k2,kDMkDN=﹣1,

設(shè)圓過(guò)定點(diǎn)F(m,0

解得m=1或m=7(舍去),

故過(guò)點(diǎn)D,M,N三點(diǎn)的圓是以MN為直徑的圓過(guò)F(1,0).

故答案為:(1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線 的準(zhǔn)線上,記的焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線與拋物線交于, 兩點(diǎn),則線段的長(zhǎng)為( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是否存在實(shí)數(shù)a,使得函數(shù)y=cos2x+asinx+ 在閉區(qū)間[0,π]的最大值是0?若存在,求出對(duì)應(yīng)的a的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1寫出函數(shù)的值域,單調(diào)區(qū)間(不必證明);

2是否存在實(shí)數(shù)使得的定義域?yàn)?/span>,值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長(zhǎng);
(2)求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)考試中,第22題和第23題為選做題,規(guī)定每位考生必須且只須在其中選做一題,現(xiàn)有甲、乙、丙、丁4名考生參加考試,其中甲、乙選做第22題的概率均為,丙、丁選做第22題的概率均為

(Ⅰ)求在甲選做第22題的條件下,恰有兩名考生選做同一道題的概率;

(Ⅱ)設(shè)這4名考生中選做第22題的學(xué)生個(gè)數(shù)為X,求X的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且在軸上截得的弦長(zhǎng)為4,記動(dòng)圓圓心的軌跡為曲線C

(Ⅰ)求直線與曲線C圍成的區(qū)域面積;

(Ⅱ)點(diǎn)在直線上,點(diǎn),過(guò)點(diǎn)作曲線C的切線、,切點(diǎn)分別為,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)在平面上有兩個(gè)向量a=(cos 2α,sin 2α)(0≤α<π),b=,ab不共線.

(1)求證:向量a+ba-b垂直;

(2)當(dāng)向量a+ba-b的模相等時(shí),α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC三個(gè)頂點(diǎn)的直角坐標(biāo)分別為A(3,4)、B(0,0)、C(c,0).
(1)若 ,求c的值;
(2)若c=5,求sinA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案