【題目】定義在上的偶函數(shù),當(dāng)時(shí),.

Ⅰ.寫(xiě)出上的解析式;

Ⅱ.求出上的最大值;

Ⅲ.上的增函數(shù),求實(shí)數(shù)的取值范圍。

【答案】(1), ;(2)當(dāng)時(shí),的最大值為;當(dāng)時(shí),的最大值為;(3).

【解析】

(1)設(shè)x∈[0,1],則-x∈[-1,0],由條件可得f(-x)的解析式.再由f(-x)=f(x),可得f(x)的解析式.
(2)令t=2x,則t∈[1,2],故有,再利用二次函數(shù)的性質(zhì)求得g(t)的最大值.
(3)由于f(x)是[0,1]上的增函數(shù),可得在[1,2]上單調(diào)遞增,故有,由此求得實(shí)數(shù)a的取值范圍.

解:(1)設(shè),則

為偶函數(shù),

(2)令,,

,當(dāng),即時(shí),

當(dāng),即時(shí),

綜上,當(dāng)時(shí),的最大值為

當(dāng)時(shí),的最大值為

(3)由題設(shè)函數(shù)上是增函數(shù),則

上為增函數(shù),,解得。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列4個(gè)命題,其中正確命題的個(gè)數(shù)是(
①計(jì)算:9192除以100的余數(shù)是1;
②命題“x>0,x﹣lnx>0”的否定是“x>0,x﹣lnx≤0”;
③y=tanax(a>0)在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù);
④命題p:“|a|+|b|≤1”是命題q:“對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要條件.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分8分)某班50名學(xué)生在一次數(shù)學(xué)測(cè)試中,成績(jī)?nèi)拷橛?/span>50100之間,將測(cè)試結(jié)果按如下方式分成五組:第一組[5060),第二組[6070),,第五組[90,100].如圖所示是按上述分組方法得到的頻率分布直方圖.

)若成績(jī)大于或等于60且小于80,認(rèn)為合格,求該班在這次數(shù)學(xué)測(cè)試中成績(jī)合格的人數(shù);

)從測(cè)試成績(jī)?cè)?/span>[50,60∪[90,100]內(nèi)的所有學(xué)生中隨機(jī)抽取兩名同學(xué),設(shè)其測(cè)試成績(jī)分別為mn,求事件“|m﹣n|10”概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程

(2)設(shè),計(jì)算的導(dǎo)數(shù).

【答案】(1).(2).

【解析】試題分析:(1)由導(dǎo)數(shù)的基本定義就出斜率,根據(jù)點(diǎn)斜式寫(xiě)出切線方程;(2), .

試題解析:

(1),則,

,∴所求切線方程為,.

(2), .

型】解答
結(jié)束】
18

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下

1)求出表中及圖中的值

2)若該校高一學(xué)生有800人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a、b、c,其面積S=a2﹣(b﹣c)2 . 若a=2,則BC邊上的中線長(zhǎng)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn= ,求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的側(cè)面PAD是正三角形,底面ABCD為菱形,A點(diǎn)E為AD的中點(diǎn),若BE=PE.

(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在上的函數(shù)對(duì)于任意實(shí)數(shù),都有成立,且,當(dāng)時(shí),

1判斷的單調(diào)性,并加以證明;

2試問(wèn):當(dāng)時(shí),是否有值?如果有,求出最值;如果沒(méi)有,說(shuō)明理由;

3解關(guān)于的不等式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)滿(mǎn)足f(x1)f(x)=-2x1f(2)15.

(1)求函數(shù)f(x)的解析式;

(2) g(x)(22m)xf(x)

若函數(shù)g(x)x[0,2]上是單調(diào)函數(shù)求實(shí)數(shù)m的取值范圍;

求函數(shù)g(x)x[0,2]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案