【題目】已知函數(shù).

1,求曲線在點(diǎn)處的切線方程;

2若曲線與直線只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1;2.

【解析】

試題分析:1求點(diǎn)處的切線方程,只要求出導(dǎo)數(shù),則有切線方程為2曲線與直線只有一個(gè)交點(diǎn),說明關(guān)于的方程只有一個(gè)實(shí)根,不可能是根,因此方程可轉(zhuǎn)化為方程只有一個(gè)實(shí)根,這樣問題又轉(zhuǎn)化為函數(shù)的圖象與直線只有一個(gè)交點(diǎn),因此只要研究函數(shù)的單調(diào)性,極值,函數(shù)值變化情況,作出簡圖就可得出結(jié)論.

試題解析:1,,,所以切線方程為.

2曲線與直線只有一個(gè)交點(diǎn),等價(jià)于關(guān)于的方程只有一個(gè)實(shí)根.

顯然,所以方程只有一個(gè)實(shí)根.

設(shè)函數(shù),則.

設(shè),為增函數(shù),又.

所以當(dāng)時(shí),,為增函數(shù);

當(dāng)時(shí),,為減函數(shù);

當(dāng)時(shí),為增函數(shù);

所以時(shí)取極小值.

又當(dāng)趨向于時(shí),趨向于正無窮;

又當(dāng)趨向于負(fù)無窮時(shí),趨向于負(fù)無窮;

又當(dāng)趨向于正無窮時(shí),趨向于正無窮.所以圖象大致如圖所示:

所以方程只有一個(gè)實(shí)根時(shí),實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的定義域?yàn)閧x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當(dāng)x<2時(shí),f(x)=|2x﹣1|,那么當(dāng)x>2時(shí),函數(shù)f(x)的遞減區(qū)間是(
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣2)2+y2=9,直線l:x+y=0.
(1)求過圓C的圓心且與直線l垂直的直線n的方程;
(2)求與圓C相切,且與直線l平行的直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①函數(shù)fx)=sin2xcos2x的最小正周期是;

②在等比數(shù)列〔}中,若,則a3=士2;

③設(shè)函數(shù)fx)=,若有意義,則

④平面四邊形ABCD中, ,則四邊形ABCD

菱形. 其中所有的真命題是:( )

A. ①②④ B. ①④ C. ③④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,其左頂點(diǎn)在圓上.

1求橢圓的方程;

2直線與橢圓的另一個(gè)交點(diǎn)為,與圓的另一個(gè)交點(diǎn)為.

當(dāng)時(shí),求直線的斜率;

是否存在直線,使?若存在,求出直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,則導(dǎo)函數(shù)f′(x)是(
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x
(1)當(dāng)a= 時(shí),滿足不等式f(x)>1的x的取值范圍為;若函數(shù)f(x)的圖象與x軸沒有交點(diǎn),則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n﹣m的最小值為 ,則實(shí)數(shù)a的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為5.

(1)求該拋物線的方程;

(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦,且,判斷直線是否過定點(diǎn)?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案