【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為,過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(2)若,求的值.
【答案】(1)曲線(xiàn)的直角坐標(biāo)方程,直線(xiàn)的普通方程為;(2)。
【解析】
(1)利用代入法消去直線(xiàn)的參數(shù)方程中的參數(shù),可得其普通方程,曲線(xiàn)的極坐標(biāo)方程兩邊同乘以,利用 即可得到曲線(xiàn)的直角坐標(biāo)方程;(2)直線(xiàn)的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程,利用韋達(dá)定理、直線(xiàn)參數(shù)方程的幾何意義可得結(jié)果.
(1)由得,
所以曲線(xiàn)的直角坐標(biāo)方程,
因?yàn)?/span>,所以,
直線(xiàn)的普通方程為;
(2)直線(xiàn)的參數(shù)方程為(為參數(shù)),
代入得:,
設(shè),對(duì)應(yīng)的參數(shù)分別為,,
則,,,
由參數(shù),的幾何意義得,,,
由得,所以,
所以,即,
故,或(舍去),
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個(gè)江水養(yǎng)殖場(chǎng),有兩個(gè)方案:方案l:在岸邊上取兩點(diǎn),用長(zhǎng)度為的圍網(wǎng)依托岸邊線(xiàn)圍成三角形(,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點(diǎn),用長(zhǎng)度為的圍網(wǎng)依托岸邊圍成三角形.請(qǐng)分別計(jì)算,面積的最大值,并比較哪個(gè)方案好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為2,AC∩BD=O.將正方形ABCD沿對(duì)角線(xiàn)BD折起,使AC=a,得到三棱錐A-BCD,如圖所示.
(1)當(dāng)a=2時(shí),求證:AO⊥平面BCD.
(2)當(dāng)二面角A-BD-C的大小為120°時(shí),求二面角A-BC-D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)“千村百鎮(zhèn)計(jì)劃”,2019年4月某新能源公司開(kāi)展“電動(dòng)綠色出行”活動(dòng),首批投放200臺(tái)型新能源車(chē)到某地多個(gè)村鎮(zhèn),供當(dāng)?shù)卮迕衩赓M(fèi)試用三個(gè)月.試用到期后,為了解男女試用者對(duì)型新能源車(chē)性能的評(píng)價(jià)情況,該公司要求每位試用者填寫(xiě)一份性能綜合評(píng)分表(滿(mǎn)分為100分).最后該公司共收回有效評(píng)分表600份,現(xiàn)從中隨機(jī)抽取40份(其中男、女的評(píng)分表各20份)作為樣本,經(jīng)統(tǒng)計(jì)得到莖葉圖:
(1)求40個(gè)樣本數(shù)據(jù)的中位數(shù);
(2)已知40個(gè)樣本數(shù)據(jù)的平均數(shù),記與的最大值為.該公司規(guī)定樣本中試用者的“認(rèn)定類(lèi)型”:評(píng)分不小于的為“滿(mǎn)意型”,評(píng)分小于的為“需改進(jìn)型”.
①請(qǐng)以40個(gè)樣本數(shù)據(jù)的頻率分布來(lái)估計(jì)收回的600份評(píng)分表中,評(píng)分小于的份數(shù);
②請(qǐng)根據(jù)40個(gè)樣本數(shù)據(jù),完成下面2×2列聯(lián)表:
認(rèn)定類(lèi)型 性別 | 滿(mǎn)意型 | 需改進(jìn)型 | 合計(jì) |
女性 | 20 | ||
男性 | 20 | ||
合計(jì) | 40 |
根據(jù)2×2列聯(lián)表判斷能否有99%的把握認(rèn)為“認(rèn)定類(lèi)型”與性別有關(guān)?
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,且,,平面平面.
(1)求證:;
(2)若底面是邊長(zhǎng)為2的菱形,四棱錐的體積為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如果把棱柱中過(guò)不相鄰的兩條側(cè)棱的截面叫棱柱的“對(duì)角面”,則平行六面體的對(duì)角面的形狀是_______,直平行六面體的對(duì)角面的形狀是______;
(2)過(guò)正三棱柱底面的一邊和兩底面中心連線(xiàn)段的中點(diǎn)作截面,則這個(gè)截面的形狀為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,縱、橫坐標(biāo)都是整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)。請(qǐng)?jiān)O(shè)計(jì)一種方法將所有的整點(diǎn)染色,每一個(gè)整點(diǎn)染成白色、紅色或黑色中的一種顏色,使得
(1)每一種顏色的點(diǎn)出現(xiàn)在無(wú)窮多條平行于橫軸的直線(xiàn)上;
(2)對(duì)于任意白點(diǎn)、紅點(diǎn)及黑點(diǎn),總可以找到一個(gè)紅點(diǎn),使為一平行四邊形。證明你設(shè)計(jì)的方法符合上述要求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng).
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫(huà)出函數(shù)的圖象,并根據(jù)圖象寫(xiě)出的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方程有三個(gè)不同的解,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,D,E分別是AB,AC的中點(diǎn),B1E⊥平面ABC,△AB1C是等邊三角形,AB=2A1B1,AC=2BC,∠ACB=90°.
(1)證明:B1C∥平面A1DE;
(2)求二面角A﹣BB1﹣C的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com