【題目】如圖, 是圓的直徑,點(diǎn)在圓上,矩形所在的平面垂直于圓所在的平面, .
(1)證明:平面⊥平面;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到平面的距離.
【答案】(1)證明過(guò)程見(jiàn)解析;(2)h=
【解析】試題分析:(1)先根據(jù)平幾知識(shí)得BC⊥AC,CD⊥BC,再利用線面垂直判定定理得BC⊥平面ACD,即有DE⊥平面ACD,最后根據(jù)面面垂直判定定理得平面⊥平面;(2)先根據(jù)DE⊥平面ACD,表示三棱錐的體積,再根據(jù)基本不等式得體積最大時(shí)滿(mǎn)足的條件: ,最后利用等體積求高,即可得點(diǎn)到平面的距離.
試題解析:(1)∵AB是直徑,∴BC⊥AC
又四邊形DCBE為矩形,CD⊥DE,BC∥DE,
∴CD⊥BC.
∵CD∩AC=C,
∴BC⊥平面ACD,
∴DE⊥平面ACD
又DE平面ADE,
∴平面ADE⊥平面ACD
(2)由(1)知VC﹣ADE=VE﹣ACD==
==,
當(dāng)且僅當(dāng)AC=BC=2時(shí)等號(hào)成立
∴當(dāng)AC=BC=2三棱錐C﹣ADE體積最大為:
此時(shí),AD==3,=3,
設(shè)點(diǎn)C到平面ADE的距離為h,則
∴h=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)>0時(shí),求函數(shù)的極值點(diǎn);
(2)證明:當(dāng)時(shí), 對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O(shè)為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板兩直角邊所在直線分別與直線BC、CD交于點(diǎn)M、N.
(1)如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是
(2)如圖2,若點(diǎn)O在正方形的中心(即兩對(duì)角線交點(diǎn)),則(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;
(3)如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),當(dāng)OM=ON時(shí),請(qǐng)?zhí)骄奎c(diǎn)O在移動(dòng)過(guò)程中可形成什么圖形?
(4)如圖4,是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時(shí),請(qǐng)你就“點(diǎn)O的位置在各種情況下(含外部)移動(dòng)所形成的圖形”提出一個(gè)正確的結(jié)論.(不必說(shuō)明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)擬對(duì)某商品進(jìn)行促銷(xiāo),現(xiàn)有兩種方案供選擇,每種促銷(xiāo)方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷(xiāo)售相互獨(dú)立.根據(jù)以往促銷(xiāo)的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,預(yù)計(jì)第一個(gè)月的銷(xiāo)量是促銷(xiāo)前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個(gè)月的銷(xiāo)量是第一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷(xiāo)量是促銷(xiāo)前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷(xiāo)量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實(shí)施方案的第二個(gè)月的銷(xiāo)量是促銷(xiāo)前銷(xiāo)量的倍數(shù).
(Ⅰ)求, 的分布列;
(Ⅱ)不管實(shí)施哪種方案, 與第二個(gè)月的利潤(rùn)之間的關(guān)系如下表,試比較哪種方案第二個(gè)月的利潤(rùn)更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,離心率為,且一個(gè)焦點(diǎn)坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),以線段為鄰邊作平行四邊形,其中點(diǎn)在橢圓上, 為坐標(biāo)原點(diǎn),求點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣ +bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“經(jīng)過(guò)已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過(guò)程:
已知:直線l和l外一點(diǎn)P.(如圖1)
求作:直線l的垂線,使它經(jīng)過(guò)點(diǎn)P.
作法:如圖2(1)在直線l上任取兩點(diǎn)A,B;(2)分別以點(diǎn)A,B為圓心,AP,BP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q;(3)作直線PQ.
所以直線PQ就是所求的垂線.
請(qǐng)回答:該作圖的依據(jù)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某養(yǎng)殖場(chǎng)需定期購(gòu)買(mǎi)飼料,已知該場(chǎng)每天需要飼料200千克,每千克飼料的價(jià)格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購(gòu)買(mǎi)飼料每次支付運(yùn)費(fèi)300元.
(1)求該場(chǎng)多少天購(gòu)買(mǎi)一次飼料才能使平均每天支付的總費(fèi)用最少;
(2)若提供飼料的公司規(guī)定,當(dāng)一次購(gòu)買(mǎi)飼料不少于5噸時(shí),其價(jià)格可享受八五折優(yōu)惠(即原價(jià)為85%).問(wèn):該場(chǎng)是否應(yīng)考慮利用此優(yōu)惠條件?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【江西省臨川實(shí)驗(yàn)學(xué)校2017屆高三第一次模擬考試數(shù)學(xué)(文)】已知拋物線,焦點(diǎn)為,點(diǎn)在拋物線上,且到的距離比到直線的距離小1.
(1)求拋物線的方程;
(2)若點(diǎn)為直線上的任意一點(diǎn),過(guò)點(diǎn)作拋物線的切線與,切點(diǎn)分別為,求證:直線恒過(guò)某一定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com