【題目】如圖是一個(gè)邊長(zhǎng)為的正三角形和半圓組成的圖形,現(xiàn)把沿直線AB折起使得與圓所在平面垂直,已知點(diǎn)C是半圓的一個(gè)三等分點(diǎn)(靠左邊一點(diǎn)),點(diǎn)E是線段PB上的點(diǎn),(1)當(dāng)點(diǎn)E是PB的中點(diǎn)時(shí),在圓弧上找一點(diǎn)Q,使得平面;(2)當(dāng)二面角的正切值為時(shí),求BE的長(zhǎng)。
【答案】(1)見解析(2)
【解析】試題分析:(1)取圓弧CB的中點(diǎn)Q,AB的中點(diǎn)O,易證OQ//AC,OE//PA,得平面EOQ平面PAC,所以平面;(2)過C作AB的垂線交AB于G點(diǎn),過G作直線AE的垂線交AE于H點(diǎn),連CH,則即為二面角的平面角,利用直角三角形的性質(zhì)可得結(jié)果.
試題解析:(1)取圓弧CB的中點(diǎn)Q,AB的中點(diǎn)O,易證OQ//AC,OE//PA,得平面EOQ平面PAC,所以平面;
(2)過C作AB的垂線交AB于G點(diǎn),過G作直線AE的垂線交AE于H點(diǎn),連CH,則即為二面角的平面角;
因?yàn)?/span>, ,在中可得,在中,可解得.
【方法點(diǎn)晴】本題主要考查線面平行的判定定理、二面角的定義及求法,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下說法:①不共面的四點(diǎn)中,任意三點(diǎn)不共線;
②有三個(gè)不同公共點(diǎn)的兩個(gè)平面重合;
③沒有公共點(diǎn)的兩條直線是異面直線;
④分別和兩條異面直線都相交的兩條直線異面;
⑤一條直線和兩條異面直線都相交,則它們可以確定兩個(gè)平面.
其中正確結(jié)論的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣x,
(1)用分段函數(shù)的形式表示該函數(shù),并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域、單調(diào)區(qū)間(不要求證明);
(3)若對(duì)任意x∈R,不等式|2x﹣1|≥a+x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為,圓與直線交于, 兩點(diǎn), 點(diǎn)的直角坐標(biāo)為.
(Ⅰ)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f1(x)、f2(x)、h(x),如果存在實(shí)數(shù)a,b使得h(x)=af1(x)+bf2(x),那么稱h(x)為f1(x)、f2(x)的和諧函數(shù).
(1)已知函數(shù)f1(x)=x﹣1,f2(x)=3x+1,h(x)=2x+2,試判斷h(x)是否為f1(x)、f2(x)的和諧函數(shù)?并說明理由;
(2)已知h(x)為函數(shù)f1(x)=log3x,f2(x)=log x的和諧函數(shù),其中a=2,b=1,若方程h(9x)+th(3x)=0在x∈[3,9]上有解,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|(2x)2﹣62x+8≤0},函數(shù)f(x)=log2x(x∈A).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)h(x)=[f(x)]2﹣log2(2x),求函數(shù)h(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,定義橢圓上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓上的點(diǎn)的“伴隨點(diǎn)”的軌跡方程;
(2)如果橢圓上的點(diǎn)的“伴隨點(diǎn)”為,對(duì)于橢圓上的任意點(diǎn)及它的“伴隨點(diǎn)”,求的取值范圍;
(3)當(dāng), 時(shí),直線交橢圓于, 兩點(diǎn),若點(diǎn), 的“伴隨點(diǎn)”分別是, ,且以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點(diǎn).
(I)證明:直線MN//平面CAB1;
(II)BA=BC=BB1,CA=CB1,CA⊥CB1,∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
求R(A∪B);
已知C={x|a<x<a+1},且CA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com