【題目】在銳角中,, _______,求的周長的取值范圍.

,,且;

;

,.

注:這三個條件中選一個,補充在上面的問題中并對其進行求解,如果選擇多個條件分別解答,按第一個解答計分.

【答案】①②③均可填入;

【解析】

若填①,則由題設條件及二倍角公式計算可解得,則由及正弦定理得,,計算化簡得周長.根據(jù)銳角三角形條件可得,結(jié)合三角函數(shù)的性質(zhì),可求得周長的范圍.若填②,則根據(jù)正弦定理化簡該式,可得,后續(xù)解答同①.若填③,則根據(jù)恒等變換求得,后續(xù)解答同①.

解:填①,由

,又,,

由正弦定理有

,

的周長

,

由銳角三角形知,則,

,

故周長;

若填入②,

由正弦定理可得,

,

后續(xù)解答同填入①;

若填入③,

,

,,

,即,

后續(xù)解答同填入①.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,底面為菱形, , , 平面.

(1)設交于點,求證: 平面;

(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若函數(shù)處的切線方程為,求 的值;

(Ⅱ)若, 求函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)求圓心C的坐標及半徑r的大。

2)已知不過原點的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

3)從圓外一點向圓引一條切線,切點為MO為坐標原點,且,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

)求的取值范圍.

)記兩個極值點, ,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知以為圓心的圓及其上一點.

1)設圓軸相切,與圓外切,且圓心在直線上,求圓的方程;

2)設垂直于的直線與圓相交于兩點,且,求直線的方程;

3)設點滿足:存在圓上的兩點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學相約來到某廟會,每人均獲得砸一顆金蛋的機會.游戲開始前,甲、乙、丙、丁四位同學對游戲中獎結(jié)果進行了預測,預測結(jié)果如下:

甲說:“我或乙能中獎”; 乙說:“丁能中獎”;

丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.

游戲結(jié)束后,這四位同學中只有一位同學中獎,且只有一位同學的預測結(jié)果是正確的,則中獎的同學是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.

某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計該學校高一年級選考方案確定的學生中選考生物的學生有多少人?

(Ⅱ)假設男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機選出2名,設隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,,數(shù)列的前項和為,若對一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步練習冊答案