【題目】設(shè)等差數(shù)列的公差為,前項(xiàng)和為,記,則數(shù)列的前項(xiàng)和是( )

A. B. C. D.

【答案】C

【解析】分析: 由等差數(shù)列的求和公式可得首項(xiàng),tanantanan+1=﹣1=﹣1,運(yùn)用裂項(xiàng)相消求和,結(jié)合兩角和差的正切公式,即可得到所求和.

詳解: 等差數(shù)列{an}的公差d,前8項(xiàng)和為6π,

可得8a1+×8×7×=6π,解得a1=,

tanantanan+1=﹣1=﹣1,

則數(shù)列{tanantanan+1}的前7項(xiàng)和為

(tana8﹣tana7+tana7﹣tana6++tana2﹣tana1)﹣7

=(tana8﹣tana7)﹣7=(tan﹣tan)﹣7

=(tan﹣tan)﹣7

=(tan()﹣tan())﹣7

=)﹣7=

故選C.

點(diǎn)睛:解答本題的關(guān)鍵是化簡(jiǎn),求和首先要看通項(xiàng)的特征, tanantanan+1=﹣1=﹣1,化簡(jiǎn)到這里之后,就可以再利用裂項(xiàng)相消求和了.化簡(jiǎn)時(shí)要注意觀察已知條件,看到要聯(lián)想到差角的正切公式,再化簡(jiǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐A﹣BCD中,△ABC和△ABD都是以AB為斜邊的直角三角形,AB⊥CD,AB=10,CD=6.

(1)問(wèn)在AB上是否存在點(diǎn)E,使得AB⊥平面ECD?

(2)如果S△ABC=S△ABD=30,求二面角C﹣AB﹣D的大小.

(3)求三棱錐A﹣BCD體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店出售茶壺和茶杯,茶壺定價(jià)每個(gè)20元,茶杯每個(gè)5元,該商店推出兩種優(yōu)惠辦法:(1)買(mǎi)一個(gè)茶壺贈(zèng)一個(gè)茶杯;(2)按總價(jià)的92%付款.

某顧客需購(gòu)買(mǎi)茶壺4個(gè),茶杯若干個(gè)(不少于4個(gè)),若購(gòu)買(mǎi)茶杯數(shù)x個(gè),付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買(mǎi)同樣多的茶杯時(shí),兩種辦法哪一種更優(yōu)惠。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】抽樣得到某次考試中高二年級(jí)某班名學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)?nèi)缦卤恚?/span>

學(xué)生編號(hào)

數(shù)學(xué)成績(jī)

物里成績(jī)

(1)在圖中畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;

(2)建立關(guān)于的回歸方程:(系數(shù)保留到小數(shù)點(diǎn)后兩位).

(3)如果某學(xué)生的數(shù)學(xué)成績(jī)?yōu)?/span>分,預(yù)測(cè)他本次的物理成績(jī)(成績(jī)?nèi)≌麛?shù)).

參考公式:回歸方程為,其中.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中國(guó)青年報(bào)》2015514日?qǐng)?bào)道:伴隨著網(wǎng)絡(luò)技術(shù)的蓬勃發(fā)展,國(guó)內(nèi)電子商務(wù)獲得了爆炸式的增長(zhǎng),2014年網(wǎng)上零售額達(dá)到了27898億元,占社會(huì)消費(fèi)品零售總額的10%,也就是說(shuō),人們?nèi)粘OM(fèi)中10%是通過(guò)網(wǎng)購(gòu),而且還以年30%,40%的速度增長(zhǎng)."假設(shè)2014-2020年網(wǎng)上零售額每年的增長(zhǎng)率均為35%,試算出2015-2020年每年的網(wǎng)上零售額(精確到1億元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,軸上的點(diǎn).

(1)當(dāng)時(shí),過(guò)點(diǎn)作直線(xiàn)相切,求切線(xiàn)的方程;

(2)存在過(guò)點(diǎn)且傾斜角互補(bǔ)的兩條直線(xiàn),,若,分別交于,四點(diǎn),且的面積相等,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在促銷(xiāo)期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的出售,當(dāng)顧客在商場(chǎng)內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:

消費(fèi)金額(元)的范圍

獲得獎(jiǎng)券的金額(元)

30

60

100

130

根據(jù)上述促銷(xiāo)方法,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠,例如:購(gòu)買(mǎi)標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:元,設(shè)購(gòu)買(mǎi)商品得到的優(yōu)惠率=(購(gòu)買(mǎi)商品獲得的優(yōu)惠額)/(商品標(biāo)價(jià)),試問(wèn):

1)若購(gòu)買(mǎi)一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?

2)對(duì)于標(biāo)價(jià)在(元)內(nèi)的商品,顧客購(gòu)買(mǎi)標(biāo)價(jià)為多少元的商品,可得到不小于的優(yōu)惠率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面,

)求證: 平面

)若二面角為直二面角,

i)求直線(xiàn)與平面所成角的大。

ii)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各題中,判斷pq的什么條件(請(qǐng)用“充分不必要條件”“必要不充分條件”“充要條件”“既不充分又不必要條件”回答):

(1)p:三角形是等腰三角形,q:三角形是等邊三角形;

(2)在一元二次方程中,有實(shí)數(shù)根,;

(3);

(4);

(5).

查看答案和解析>>

同步練習(xí)冊(cè)答案