【題目】個孩子在黃老師的后院玩球,突然傳來一陣打碎玻璃的響聲,黃老師跑去察看,發(fā)現(xiàn)一扇窗戶玻璃被打破了,老師問:“誰打破的?”寶寶說:“是可可打破的.”可可說:“是毛毛打破的.”毛毛說:“可可說謊.”多多說:“我沒有打破窗子.”如果只有一個小孩說的是實話,那么打碎玻璃的是( )
A.寶寶B.可可C.多多D.毛毛
【答案】C
【解析】
根據(jù)題意,分別假設(shè)四個人打碎玻璃,結(jié)合他們的對話,得矛盾,即可得解.
假設(shè)是寶寶打碎玻璃,則寶寶說謊話,可可說謊話,毛毛說實話,多多說實話,與題意只有一個小孩說實話矛盾,所以假設(shè)不成立,即寶寶沒有打碎玻璃;
假設(shè)是可可打碎玻璃,則寶寶說實話,可可說謊話,毛毛說實話,多多說實話,與題意只有一個小孩說實話矛盾,所以假設(shè)不成立,即可可沒有打碎玻璃;
假設(shè)是多多打碎玻璃,則寶寶說謊話,可可說謊話,毛毛說實話,多多說謊話,與題意只有一個小孩說實話相符,所以假設(shè)成立,即多多打碎玻璃;
假設(shè)是毛毛打碎玻璃,則寶寶說謊話,可可說實話,毛毛說謊話,多多說實話,與題意只有一個小孩說實話矛盾,所以假設(shè)不成立,即毛毛沒有打碎玻璃;
綜上可知,是多多打碎玻璃
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】下面是甲、乙兩位同學高三上學期的5次聯(lián)考數(shù)學成績,現(xiàn)在只知其從第1次到第5次分數(shù)所在區(qū)間段分布的條形圖(從左至右依次為第1至第5次),則從圖中可以讀出一定正確的信息是( )
A.甲同學的成績的平均數(shù)大于乙同學的成績的平均數(shù)
B.甲同學的成績的方差大于乙同學的成績的方差
C.甲同學的成績的極差小于乙同學的成績的極差
D.甲同學的成績的中位數(shù)小于乙同學的成績的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學?萍脊(jié)需要同學設(shè)計一幅矩形紙板宣傳畫,要求畫面的面積為(如圖中的陰影部分),畫面的上、下各留空白,左、右各留空白.
(1)如何設(shè)計畫面的高與寬的尺寸,才能使整個宣傳畫所用紙張面積最。
(2)如果按照第一問這樣制作整個宣傳畫,在科技節(jié)結(jié)束以后,這整個宣傳畫紙板可再次作為某實驗道具,并要求從整個宣傳畫板的四個角各截取一個相同的小正方形,做成一個長方體形的無蓋容器.問截下的小正方形的邊長(也就是該容器的高)是多少時,該容器的容積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種汽車的購車費用是10萬元,每年使用的保險費、養(yǎng)路費、汽油費約為萬元,年維修費用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購車費用、每年使用的保險費、養(yǎng)路費、汽油費、維修費用的和平均攤到每一年的費用叫做年平均費用.設(shè)這種汽車使用年的維修費用的和為,年平均費用為.
(1)求出函數(shù),的解析式;
(2)這種汽車使用多少年時,它的年平均費用最小?最小值是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1) 解不等式;
(2) 設(shè)函數(shù),若函數(shù)為偶函數(shù),求實數(shù)的值;
(3) 當時,是否存在實數(shù)(其中),使得不等式恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年我國將加快階梯水價推行,原則是“;尽⒔C制、促節(jié)約”,其中“保基本”是指保證至少80%的居民用戶用水價格不變.為響應(yīng)國家政策,制定合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):
(1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;
(2)設(shè)該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價格保持不變.試根據(jù)樣本估計總體的思想,分析此方案是否符合國家“;”政策.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線的焦點為,過點的直線與拋物線相交于兩點,與拋物線的準線相交于點, ,則與的面積之比__________.
【答案】
【解析】
由題意可得拋物線的焦點的坐標為,準線方程為。
如圖,設(shè),過A,B分別向拋物線的準線作垂線,垂足分別為E,N,則
,解得。
把代入拋物線,解得。
∴直線AB經(jīng)過點與點,
故直線AB的方程為,代入拋物線方程解得。
∴。
在中, ,
∴
∴。答案:
點睛:
在解決與拋物線有關(guān)的問題時,要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義,它到準線的距離為d,則|MF|=d,可解決有關(guān)距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.
【題型】填空題
【結(jié)束】
17
【題目】已知三個內(nèi)角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com