【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

【答案】D
【解析】解:∵α∈(0, ),∴2α∈(0,π). ∵cosα= ,∴cos2α=2cos2α﹣1=﹣ ,∴sin2α= = ,
而α,β∈(0, ),∴α+β∈(0,π),
∴sin(α+β)= = ,
∴cos(α﹣β)
=cos[2α﹣(α+β)]
=cos2αcos(α+β)+sin2αsin(α+β)
=(﹣ )×(﹣ )+ ×
=
故選D
要求cos(α﹣β),首先把角α﹣β變?yōu)?α﹣(α+β),即要求出cos2α和sin2α,sin(α+β)的值,分別表示出2α和α+β的范圍,利用同角三角函數(shù)間的基本關(guān)系分別求出,然后利用兩角差的余弦函數(shù)公式代入求值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間 上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),記.

(1)求函數(shù)的定義域及其零點;

(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年6月22 日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間 內(nèi)的人分別稱為 “青少年”和“中老年”.

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);

(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;

附:參考公式,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓心坐標為( ,1)的圓M與x軸及直線y= x分別相切于A,B兩點,另一圓N與圓M外切、且與x軸及直線y= x分別相切于C、D兩點.
(1)求圓M和圓N的方程;
(2)過點B作直線MN的平行線l,求直線l被圓N截得的弦的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC滿足| |=3,| |=4,O是△ABC所在平面內(nèi)一點,滿足| |=| |=| |,且 + (λ∈R),則cos∠BAC=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程x2+y2+4x﹣2y﹣4=0,則x2+y2的最大值是(
A.
B.
C.14﹣
D.14+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G分別是棱A1B1、BB1、B1C1的中點,則下列結(jié)論中:
①FG⊥BD
②B1D⊥面EFG
③面EFG∥面ACC1A1
④EF∥面CDD1C1
正確結(jié)論的序號是(

A.①和②
B.②和④
C.①和③
D.③和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫)與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):

日期

1月11號

1月12號

1月13號

1月14號

1月15號

平均氣溫

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;

(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.

(參考公式:,

查看答案和解析>>

同步練習(xí)冊答案