精英家教網 > 高中數學 > 題目詳情

【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現隨機抽取100天的數據,將樣本數據分為[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。

(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;

(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案(1)的概率;

【答案】(1)0.4(2)

【解析】

1)從頻率分布直方圖中計算出前四組矩形面積之和,即為所求概率;

2)列舉出全部的基本事件,并確定出基本事件的總數,然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數,最后利用古典概型的概率公式可計算出結果。

1)設事件為“隨機選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于單”

依題意,連鎖店的人均日快遞業(yè)務量不少于單的頻率分別為:

因為

所以估計為;

2)設事件為“從四名騎手中隨機選取2人,至少有1名騎手選擇方案(1)”

從四名新聘騎手中隨機選取2名騎手,有6種情況,即 {甲,乙} ,{甲,丙}{甲,丁}, {乙,丙},{乙,丁},{丙,丁}

其中至少有1名騎手選擇方案()的情況為{甲,乙} ,{甲,丙},,{甲,丁}, {乙,丙},{乙,丁},

所以。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數y=f(x﹣1)的圖象關于點(1,0)對稱,且當x∈(﹣∞,0)時,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導函數),若a=(30.3)f(30.3),b=(logπ3)f(logπ3),c=(log3 )f(log3 ),則 a,b,c的大小關系是(
A.a>b>c
B.c>a>b
C.c>b>a
D.a>c>b

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是指大氣中空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標準采用世界衛(wèi)生組織設定的最寬限值,即日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75微克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.某城市環(huán)保局從該市市區(qū)2017年上半年每天的監(jiān)測數據中隨機抽取18天的數據作為樣本,將監(jiān)測值繪制成莖葉圖如下圖所示(十位為莖,個位為葉).

(1)求這18個數據中超標數據的平均數與方差;

(2)在空氣質量為一級的數據中,隨機抽取2個數據,求其中恰有一個為日均值小于30微克/立方米的數據的概率;

(3)以這天的日均值來估計一年的空氣質量情況,則一年(按天計算)中約有多少天的空氣質量超標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l經過點A(﹣1,0),其傾斜角是α,以原點O為極點,以x軸的非負半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的極坐標方程是ρ2=6ρcosθ﹣5.
(Ⅰ)若直線l和曲線C有公共點,求傾斜角α的取值范圍;
(Ⅱ)設B(x,y)為曲線C任意一點,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數的圖象在點處的切線方程為,求,的值;

(2)當時,在區(qū)間上至少存在一個,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側面PAB⊥底面ABCD,且∠PAB=∠ABC=90°,AD∥BC,PA=AB=BC=2AD,E是PC的中點.
(Ⅰ)求證:DE⊥平面PBC;
(Ⅱ)求二面角A﹣PD﹣E的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列{an}中,a1=1,且anan+1+ (an﹣an+1)+1=0,則a2016=(
A.1
B.﹣1
C.2+
D.2﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 恰有兩個零點,則a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現的虧損.某投資人打算投資甲、乙兩個項目.根據預測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

同步練習冊答案