【題目】已知拋物線:,點是上的不同于頂點的動點,上在點處的切線分別與軸軸交于點、.若存在常數(shù)滿足對任意的點都有.
(Ⅰ)求實數(shù),的值;
(Ⅱ)過點作的垂線與交于不同于的一點,求面積的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)先求導(dǎo)數(shù),利用導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點斜式得切線方程,即得、坐標(biāo),根據(jù)坐標(biāo)化簡,最后根據(jù)等式恒成立得,的值;
(Ⅱ)先設(shè),根據(jù)向量垂直坐標(biāo)表示得與橫坐標(biāo)關(guān)系,再根據(jù)兩點間距離公式得、,最后根據(jù)三角形面積公式得面積函數(shù)關(guān)系式,利用導(dǎo)數(shù)求其最值,即得結(jié)果.
(Ⅰ)設(shè),則,
,
即.
分別與軸軸交于點、
,.
,
∵存在常數(shù)滿足對任意的點都有∴.
(Ⅱ)設(shè),
∵,,故,即
又,故的面積為
取,則.
∴在上是減函數(shù),在上是增函數(shù).
∴當(dāng)時,的最小值是.
故面積的最小值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的右焦點為,過焦點,斜率為的直線交橢圓于、兩點(異于長軸端點),是直線上的動點.
(1)若直線平分線段,求證:.
(2)若直線的斜率,直線、、的斜率成等差數(shù)列,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),(),
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時的圖象總在函數(shù)的圖象的下方,求正實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,與坐標(biāo)軸分別交于A,B兩點,且經(jīng)過點Q(,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若P(m,n)為橢圓C外一動點,過點P作橢圓C的兩條互相垂直的切線l1、l2,求動點P的軌跡方程,并求△ABP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1
B.若正態(tài)分布,則
C.把某中學(xué)的高三年級560名學(xué)生編號:1到560,再從編號為1到10的10名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號為,然后抽取編號為,,,…的學(xué)生,這樣的抽樣方法是分層抽樣
D.若一組數(shù)據(jù)0,,3,4的平均數(shù)是2,則該組數(shù)據(jù)的方差是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為加強(qiáng)對銷售員的考核與管理,從銷售部門隨機(jī)抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.
(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對該銷售小組給予獎勵,否則不予獎勵.試判斷該公司是否需要對抽取的銷售小組發(fā)放獎勵;
(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請專業(yè)機(jī)構(gòu)對這5名銷售員的月均銷售額逐一進(jìn)行審核,直到能確定出造假組員為止.設(shè)審核次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面,已知,,,點是棱的中點.
(1)求證:平面;
(2)求二面角的余弦值;
(3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com