【題目】給出定義:若(其中為整數(shù)),則叫做離實(shí)數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)與的圖象有且只有一個公共點(diǎn),則的取值不可能是( )
A.B.C.D.
【答案】C
【解析】
先分析函數(shù)的性質(zhì),可以畫出圖象,然后結(jié)合二次函數(shù)性質(zhì)可知什么時(shí)候只有一個公共點(diǎn).
∵當(dāng)(其中為整數(shù)),,函數(shù),
∴是周期函數(shù),周期為1,當(dāng)時(shí),.作出函數(shù)圖象,如圖,
A.時(shí),,它的零點(diǎn)是0和,由只有一組解,即直線與在相切,又,但不在函數(shù)的圖象上,因此與只有一個公共點(diǎn);
B.時(shí),,它的零點(diǎn)是0和,,由(1)知它在處切線方程為,因此的圖象與的圖象只有一個公共點(diǎn);
C.時(shí),,它的零點(diǎn)為0和,但,而,因此與的圖象有兩個公共點(diǎn);
D.時(shí),,它的零點(diǎn)為0和,,且在處的切線方程是.因此與的圖象只有一個公共點(diǎn).
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面
(I)求證:;
(II)若M為中點(diǎn),求證:平面;
(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖),
(1)由圖中數(shù)據(jù)求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內(nèi)的學(xué)生中,用分層抽樣的方法選取18人參加一項(xiàng)活動,則從身高在[140,150]內(nèi)的學(xué)生中選取的人數(shù)應(yīng)為多少?
(3)估計(jì)這所小學(xué)的小學(xué)生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).
(1)當(dāng)θ=-時(shí),求函數(shù)f(x)的最大值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,]上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中超足球隊(duì)的后衛(wèi)線上一共有7名球員,其中3人只能打中后衛(wèi),2人只能打邊后衛(wèi),2人既能打中后衛(wèi)又能打邊后衛(wèi),主教練決定選派4名后衛(wèi)上場比賽,假設(shè)可以隨機(jī)選派球員.
(1)在選派的4人中至少有2人能打邊后衛(wèi)的概率;
(2)在選派的4人中既能打中后衛(wèi)又能打邊后衛(wèi)的人數(shù)的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,異面直線,互相垂直,,,,,,截面分別與,,,相交于點(diǎn),,,,且平面,平面.
(1)求證:平面;
(2)求銳二面角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com