【題目】已知在數(shù)列中, , .

(1)證明數(shù)列是等差數(shù)列,并求的通項公式;

(2)設(shè)數(shù)列的前項和為,證明: .

【答案】(1)(2)見解析

【解析】試題分析:(1)證明一個數(shù)列是否為等差數(shù)列的基本方法有兩種:一是定義法:證明,為常數(shù);二是等差中項法,證明,若證明一個數(shù)列不是等差數(shù)列,則只需舉出反例即可;(2)觀測數(shù)列的特點形式,看使用什么方法求和.使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質(zhì)上造成正負相消是此法的根源和目的.3)在做題時注意觀察式子特點選擇有關(guān)公式和性質(zhì)進行化簡,這樣給做題帶來方便,掌握常見求和方法,如分組轉(zhuǎn)化求和,裂項法,錯位相減.

試題解析:(1)由,得, (2分)

兩式相減,得,即, (4分)

所以數(shù)列是等差數(shù)列. 5分)

,得,所以, (6分)

. 8分)

2)因為11分)

所以

) (14分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,討論函數(shù)的單調(diào)性;

2)若函數(shù)上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓(xùn)練次數(shù)與答題正確率的關(guān)系,對某校高三某班學(xué)生進行了關(guān)注統(tǒng)計,得到如表數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是的強化訓(xùn)練次數(shù)(保留整數(shù));

(2)若用)表示統(tǒng)計數(shù)據(jù)的“強化均值”(保留整數(shù)),若“強化均值”的標準差在區(qū)間內(nèi),則強化訓(xùn)練有效,請問這個班的強化訓(xùn)練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

, ,樣本數(shù)據(jù), ,…, 的標準差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某技術(shù)公司開發(fā)的某種產(chǎn)品中隨機抽取200件,測量這些產(chǎn)品的一項質(zhì)量指標值(記為),由測量結(jié)果得到如下頻率分布直方圖:

公司規(guī)定:當(dāng)時,產(chǎn)品為正品;當(dāng)時,產(chǎn)品為次品,公司每生產(chǎn)一件這種產(chǎn)品,若是正品,則盈利90元;若是次品,則虧損30元,記的分布列和數(shù)學(xué)期望;

由頻率分布直方圖可以認為,服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)

①利用該正態(tài)分布,求

②某客戶從該公司購買了500件這種產(chǎn)品,記表示這500件產(chǎn)品中該項質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù),利用①的結(jié)果,求.

附:,

,則,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于,兩點,與交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4,坐標系與參數(shù)方程

已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設(shè)Mx,y)為橢圓C上任意一點,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4,坐標系與參數(shù)方程

已知在平面直角坐標系xOy中,橢圓C的方程為,以O為極點,x軸的非負半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為

(1)求直線的直角坐標方程;

(2)設(shè)Mx,y)為橢圓C上任意一點,求|x+y﹣1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若,求函數(shù)在的切線方程;

(2)若函數(shù)上為單調(diào)遞減函數(shù),求實數(shù)的最小值;

(3)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.

查看答案和解析>>

同步練習(xí)冊答案