【題目】設(shè)函數(shù),其中.

(1)若,求函數(shù)在區(qū)間上的取值范圍;

(2)若,且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

(3)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3).

【解析】試題分析:(1)當(dāng)時(shí),利用配方法可知當(dāng)時(shí)有最小值,當(dāng)時(shí)有最大值.(2)由(1)知函數(shù)對(duì)稱軸為,由此將分成兩類,討論函數(shù)的最大值,并使最大值小于或等于,由此求得實(shí)數(shù)的取值范圍.(3)將問題轉(zhuǎn)化為函數(shù)在區(qū)間上的最小值和最大值之差的絕對(duì)值小于等于來解決.對(duì)分成四類,討論函數(shù)的最值,并求得的取值范圍.

試題解析: ,所以在區(qū)間上單調(diào)減,在區(qū)間上單調(diào)增,且對(duì)任意的,都有

(1)若,則.

在區(qū)間上的取值范圍為.

(2)“對(duì)任意的,都有”等價(jià)于“在區(qū)間上, ”.

時(shí),則,

所以在區(qū)間上單調(diào)減,在區(qū)間上單調(diào)增.

當(dāng),即時(shí),由,得,

從而.

當(dāng),即時(shí),由,得,

從而.

綜上, 的取值范圍為區(qū)間.

(3)設(shè)函數(shù)在區(qū)間上的最大值為,最小值為

所以“對(duì)任意的,都有”等價(jià)于“”.

①當(dāng), .

,得.

從而.

②當(dāng), .

,得.

從而.

③當(dāng), .

,得.

從而.

④當(dāng), .

,得.

從而.

綜上, 的取值范圍為區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若滿足:對(duì)任意的,都有恒成立,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,過點(diǎn)的直線相交于、兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為

(Ⅰ)判斷點(diǎn)是否在直線上,并給出證明;

(Ⅱ)設(shè),求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于兩點(diǎn).

1)當(dāng)時(shí),分別求在點(diǎn)處的切線方程;

2軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)

(1)為了了解工薪階層對(duì)工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應(yīng)抽取的人數(shù);

(2)根據(jù)頻率分布直方圖估計(jì)這人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且

(1)求角C的大。

(2)若 ,且三角形ABC的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)統(tǒng)計(jì),某醫(yī)院一個(gè)結(jié)算窗口每天排隊(duì)結(jié)算的人數(shù)及相應(yīng)的概率如下:

排除人數(shù)

0--5

6--10

11--15

16--20

21--25

25人以上

概率

0.1

0.15

0.25

0.25

0.2

0.05

(1)求每天超過20人排隊(duì)結(jié)算的概率;

(2)求2天中,恰有1天出現(xiàn)超過20人排隊(duì)結(jié)算的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A已知直線的參數(shù)方程為為參數(shù)),在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的方程為

(1)求圓的圓心的極坐標(biāo);

(2)判斷直線與圓的位置關(guān)系.

已知不等式的解集為

(1)求實(shí)數(shù)的值;

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):

2

4

6

8

10

4

5

7

9

10

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(2)根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標(biāo)準(zhǔn)煤?

附:回歸直線的斜率和截距的最小二乘估計(jì)分別為: .

查看答案和解析>>

同步練習(xí)冊(cè)答案