當(dāng)為正整數(shù)時(shí),定義函數(shù)表示的最大奇因數(shù).如,,….記.則           .(用來表示)

解析試題分析:由N(x)的性質(zhì)可得知,當(dāng)x是奇數(shù)時(shí),x的最大奇數(shù)因子明顯是它本身.因此N(x)=x,因此,我們就可將進(jìn)行分解,分別算出奇數(shù)項(xiàng)的和與偶數(shù)項(xiàng)的和進(jìn)而相加,即
所以=N(1)+N(3)+…+N()=1+3+…+= 。
當(dāng)x是偶數(shù)時(shí),且x∈[
①當(dāng)k=1時(shí),x∈[2,4)該區(qū)間包含的偶數(shù)只有2,而N(2)=1所以該區(qū)間所有的偶數(shù)的最大奇因數(shù)之和為;
②當(dāng)k=2時(shí),x∈[4,8),該區(qū)間包含的偶數(shù)為4,6,所以該區(qū)間所有的最大奇因數(shù)偶數(shù)之和為
③當(dāng)k=3時(shí),x∈[8,16),該區(qū)間包含的偶數(shù)為8,10.,12,14,則該區(qū)間所有偶數(shù)的最大奇因數(shù)之和為,因此我們可以用數(shù)學(xué)歸納法得出當(dāng)x∈[)該區(qū)間所有偶數(shù)的最大奇因數(shù)和
∴對(duì)k從1到n-1求和得

綜上知:。
考點(diǎn):數(shù)列的綜合應(yīng)用。
點(diǎn)評(píng):本題主要考查了數(shù)列的求和問題.考查了學(xué)生通過已知條件分析問題和解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示的數(shù)陣叫“萊布尼茲調(diào)和三角形”,他們是由整數(shù)的倒數(shù)組成的,第行有個(gè)數(shù)且兩端的數(shù)均為,每個(gè)數(shù)是它下一行左右相鄰兩數(shù)的和,如:…,則第行第3個(gè)數(shù)字是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖. 其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以表示第幅圖的蜂巢總數(shù).則=_____;=___________.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知an=(n="1," 2,  ),則S99=a1+a2+ +a99           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若數(shù)列中,,其前n項(xiàng)的和是,則在平面直角坐標(biāo)系中,直線在y軸上的截距為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

是公比為q的等比數(shù)列,其前n項(xiàng)的積為,并且滿足條件>1,>1, <0,給出下列結(jié)論:① 0<q<1;② T198<1;③>1。其中正確結(jié)論的序號(hào)是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知是數(shù)列的前項(xiàng)和,向量,,且滿足,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足對(duì)任意的,都有.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式
(3)設(shè)數(shù)列的前項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(其中),區(qū)間.
(1)求區(qū)間的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為);
(2)把區(qū)間的長(zhǎng)度記作數(shù)列,令,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案