【題目】已知函數(shù)f(x)=kx2+2kx+1在[﹣3,2]上的最大值為5,則k的值為

【答案】 或﹣4
【解析】解:f(x)=kx2+2kx+1=k(x+1)2﹣k+1
①當k>0時,二次函數(shù)圖象開口向上,對稱軸為x=﹣1
當x=2時,f(x)有最大值,f(2)=8k+1=5,∴k= ,滿足條件;
當k<0時,二次函數(shù)圖象開口向下,對稱軸為x=﹣1
當x=﹣1時,f(x)有最大值,f(﹣1)=﹣k+1=5,∴k=﹣4,滿足條件.
②當k=0時,顯然不成立.
所以答案是: 或﹣4.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計

10

55

合計


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),如果存在區(qū)間),同時滿足:

內(nèi)是單調(diào)函數(shù);②當定義域是時, 的值域也是

則稱函數(shù)是區(qū)間上的“保值函數(shù)”.

(1)求證:函數(shù)不是定義域上的“保值函數(shù)”;

(2)已知)是區(qū)間上的“保值函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明f(x)為偶函數(shù);
(2)若不等式k≤xf(x)+ 在x∈[1,3]上恒成立,求實數(shù)k的取值范圍;
(3)當x∈[ , ](m>0,n>0)時,函數(shù)g(x)=tf(x)+1,(t≥0)的值域為[2﹣3m,2﹣3n],求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:全集U=R,函數(shù) 的定義域為集合A,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于兩個定義域相同的函數(shù)f(x)、g(x),若存在實數(shù)m,n,使h(x)=mf(x)+ng(x),則稱函數(shù)f(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1是由f(x)=x2+ax和g(x)=x+b生成,其中a,b∈R且ab≠0,求 的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1)”生成一個函數(shù)h(x),使得h(x)滿足:
①是偶函數(shù),②有最小值1,求h(x)的解析式.

查看答案和解析>>

同步練習冊答案