【題目】已知圓和圓.
(1)若直線過點,且被圓截得的弦長為2,求直線的方程;
(2)設(shè)為平面上的點,滿足:存在過點的無窮多對互相垂直的直線和,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標(biāo).
【答案】(1)或;(2) 或
【解析】
(1)因為直線過點,故可以設(shè)出直線的點斜式方程,又由直線被圓截得的弦長為,根據(jù)半弦長、半徑、弦心距滿足勾股定理,求出弦心距,即圓心到直線的距離,得到關(guān)于直線斜率的方程,解方程求出值,代入即得直線的方程;
(2)與(1)相同,我們可以設(shè)出過點的直線和的點斜式方程,由于兩直線斜率積為1,且直線被圓截得的弦長與直線被圓截得的弦長相等, 故我們可以得到一個關(guān)于直線斜率的方程,解方程求出值,代入即得直線和的方程.
(1)由于直線與圓不相交,
所以直線的斜率存在,設(shè)直線方程為 ,
圓的圓心到直線的距離為,
因為直線被圓截得的弦長為 ,
所以 ,
又 ,從而
即或
所以直線的方程為或 .
(2) 設(shè)點滿足條件,
由題意分析可得直線和的斜率均存在且不為0,
不妨設(shè)直線的方程為,
則直線方程為 ,
因為和的半徑相等,及直線被圓截得的弦長與直線被圓截得的弦長相等,
所以圓的圓心到直線的距離和圓的圓心到直線的距離相等,
即
整理得
即
或
因為的取值有無窮多個,所以 或
解得 或
這樣的點只可能是點 或點 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村莊對村內(nèi)50名老年人、年輕人每年是否體檢的情況進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:
每年體檢 | 未每年體檢 | 合計 | |
老年人 | 7 | ||
年輕人 | 6 | ||
合計 | 50 |
已知抽取的老年人、年輕人各25名
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)試運用獨立性檢驗思想方法,判斷能否有99%的把握認(rèn)為每年是否體檢與年齡有關(guān)?
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從含有兩件正品,和一件次品的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.
(1)每次取出不放回;
(2)每次取出后放回.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學(xué)生們旅游動機強烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個巨大的市場.為了解大學(xué)生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計有多少位同學(xué)旅游費用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮,其中P是弧TN上一點.設(shè),長方形的面積為S平方米.
(1)求關(guān)于的函數(shù)解析式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查喜歡看書是否與性別有關(guān),某校調(diào)查小組就“是否喜歡看書”這個問題,在全校隨機調(diào)研了100名學(xué)生.
(1)完成下列列聯(lián)表:
喜歡看書 | 不喜歡看書 | 合計 | |
女生 | 15 | 50 | |
男生 | 25 | ||
合計 | 100 |
(2)能否在犯錯率不超過0.025的前提下認(rèn)為“喜歡看書與性別有關(guān)”.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.
(1)設(shè)總造價(元)表示為長度的函數(shù);
(2)當(dāng)取何值時,總造價最低,并求出最低總造價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com