【題目】在四面體S—ABC中,,二面角S—AC—B的余弦值是,則該四面體外接球的表面積是 ( )
A.B.C.24D.6
【答案】D
【解析】
取AC中點(diǎn)D,連接SD,BD,由題意可得∠SDB為二面角S﹣AC﹣B,取等邊△SAC的中心E,找出O點(diǎn)為四面體的外接球球心.
取AC中點(diǎn)D,連接SD,BD,
因?yàn)?/span>,所以BD⊥AC,
因?yàn)?/span>SA=SC=2,所以SD⊥AC,AC⊥平面SDB.
所以∠SDB為二面角S﹣AC﹣B.
在△,
所以AC=2.
取等邊△SAC的中心E,作EO⊥平面SAC,
過(guò)D作DO⊥平面ABC,O為外接球球心,
所以ED,二面角S﹣AC﹣B的余弦值是,所以,OD,
所以BOOA=OS=OC
所以O點(diǎn)為四面體的外接球球心,
其半徑為,表面積為6π.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保部門(mén)對(duì)該市市民進(jìn)行了一次動(dòng)物保護(hù)知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參'與問(wèn)卷調(diào)查的100人的得分(滿(mǎn)分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問(wèn)卷得分不低于70分的市民稱(chēng)為“動(dòng)物保護(hù)關(guān)注者”,則山圖中表格可得列聯(lián)表如下:
非“動(dòng)物保護(hù)關(guān)注者” | 是“動(dòng)物保護(hù)關(guān)注者” | 合計(jì) | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計(jì) | 25 | 75 | 100 |
(1)請(qǐng)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“動(dòng)物保護(hù)關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱(chēng)為“動(dòng)物保護(hù)達(dá)人”.現(xiàn)在從本次調(diào)查的“動(dòng)物保護(hù)達(dá)人”中利用分層抽樣的方法隨機(jī)抽取6名市民參與環(huán)保知識(shí)問(wèn)答,再?gòu)倪@6名市民中抽取2人參與座談會(huì),求抽取的2名市民中,既有男“動(dòng)物保護(hù)達(dá)人”又有女“動(dòng)物保護(hù)達(dá)人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,把滿(mǎn)足條件的所有數(shù)列構(gòu)成的集合記為.
(1)若數(shù)列通項(xiàng)為,求證:;
(2)若數(shù)列是等差數(shù)列,且,求的取值范圍;
(3)若數(shù)列的各項(xiàng)均為正數(shù),且,數(shù)列中是否存在無(wú)窮多項(xiàng)依次成等差數(shù)列,若存在,給出一個(gè)數(shù)列的通項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:;
(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時(shí)間與每天獲得的利潤(rùn)(單位:萬(wàn)元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤(rùn) | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)估計(jì)星期日獲得的利潤(rùn)為多少萬(wàn)元.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)是拋物線:的焦點(diǎn),動(dòng)直線過(guò)點(diǎn)且與拋物線相交于,兩點(diǎn).當(dāng)直線變化時(shí),的最小值為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn),分別作拋物線的切線,,與相交于點(diǎn),,與軸分別交于點(diǎn),,求證:與的面積之比為定值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面底面,,.
(Ⅰ)求證:平面;
(Ⅱ)若,,且與平面所成的角為,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學(xué)家的統(tǒng)計(jì),人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時(shí)間周期分別為23天、28天、33天.每個(gè)節(jié)律周期又分為高潮期、臨界日和低潮期三個(gè)階段.以上三個(gè)節(jié)律周期的半數(shù)為臨界日,這就是說(shuō)11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003年3月20日(每年按365天計(jì)算).
(1)請(qǐng)寫(xiě)出小英的體力、情緒和智力節(jié)律曲線的函數(shù);
(2)試判斷小英在2019年4月22日三種節(jié)律各處于什么階段,當(dāng)日小英是否適合參加某項(xiàng)體育競(jìng)技比賽?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com